Compare commits

..

17 Commits

Author SHA1 Message Date
semantic-release-bot
41aa7ff33f chore(abacus-react): release v2.20.0 [skip ci]
# [2.20.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.19.0...abacus-react-v2.20.0) (2026-01-02)

### Bug Fixes

* **vision:** clear config when switching camera sources ([ff59612](ff59612e7b))
* **vision:** hide flip camera button when only one camera available ([7a9185e](7a9185eadb))
* **vision:** include remote camera in isVisionSetupComplete check ([a8fb77e](a8fb77e8e3))
* **vision:** remote camera persistence and UI bugs ([d90d263](d90d263b2a))

### Features

* **vision:** add activeCameraSource tracking and simplify calibration UI ([1be6151](1be6151bae))
* **vision:** add CV-based bead detection and fix remote camera connection ([005140a](005140a1e7))
* **vision:** add TensorFlow.js column classifier model and improve detection ([5d0ac65](5d0ac65bdd))
* **vision:** broadcast vision frames to observers (Phase 5) ([b3b769c](b3b769c0e2))
* **vision:** disable auto-detection with feature flag ([a5025f0](a5025f01bc))
* **vision:** integrate vision feed into docked abacus ([d8c7645](d8c764595d))
2026-01-02 00:02:33 +00:00
Thomas Hallock
1be6151bae feat(vision): add activeCameraSource tracking and simplify calibration UI
- Add explicit activeCameraSource field to VisionConfig to track which
  camera is in use (local vs phone), fixing button visibility bugs when
  switching between camera sources
- Simplify calibration UI by removing the confusing "Auto/Manual" mode
  toggle, replacing with a cleaner crop status indicator
- Remove calibration requirement from isVisionSetupComplete for local
  camera since auto-crop runs continuously when markers are detected
- Update DockedVisionFeed to use activeCameraSource instead of inferring
  from which configs are set

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 18:01:12 -06:00
Thomas Hallock
70b363ce88 refactor(vision): combine setup modal into single draggable experience
- Merge VisionSetupModal and AbacusVisionBridge into unified UI
- Remove two-step configuration process (no more "Configure Camera" button)
- Add vision control props to AbacusVisionBridge:
  - showVisionControls, isVisionEnabled, isVisionSetupComplete
  - onToggleVision, onClearSettings callbacks
- Add Enable/Disable Vision and Clear Settings buttons to bridge footer
- Simplify VisionSetupModal from ~257 to ~93 lines
- Modal is now draggable via framer-motion (built into AbacusVisionBridge)

User experience: Open modal → immediately see camera feed and all controls
in one place. Drag modal anywhere. Configure, enable/disable, close.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 17:30:46 -06:00
Thomas Hallock
d90d263b2a fix(vision): remote camera persistence and UI bugs
- Fix camera source switching: clear remoteCameraSessionId in context when
  switching to local camera so DockedVisionFeed uses the correct source
- Fix modal drag during calibration: disable framer-motion drag when
  calibration overlay is active to allow handle dragging
- Fix initial camera source: pass initialCameraSource prop to
  AbacusVisionBridge so it shows phone camera when reconfiguring remote
- Extend session TTL from 10 to 60 minutes for remote camera sessions
- Add localStorage persistence for remote camera session IDs
- Add auto-reconnect logic for both desktop and phone hooks
- Add comprehensive tests for session-manager, useRemoteCameraDesktop,
  and useRemoteCameraPhone hooks
- Guard test setup.ts for node environment (HTMLImageElement check)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 17:23:27 -06:00
Thomas Hallock
43524d8238 test: add unit tests for vision broadcast feature
- VisionIndicator.test.tsx: tests for rendering, status indicator, click behavior, accessibility
- ObserverVisionFeed.test.tsx: tests for image display, detected value, live/stale indicator
- useSessionBroadcast.vision.test.ts: tests for sendVisionFrame socket emission
- useSessionObserver.vision.test.ts: tests for visionFrame receiving and cleanup
- MyAbacusContext.vision.test.tsx: tests for vision config state and callbacks

Also fixes:
- useSessionObserver: clear visionFrame and transitionState on stopObserving
- test/setup.ts: add canvas Image mock to prevent jsdom errors with data URIs

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 16:08:51 -06:00
Thomas Hallock
a5025f01bc feat(vision): disable auto-detection with feature flag
- Add ENABLE_AUTO_DETECTION flag (set to false) in DockedVisionFeed
- Conditionally import detection modules for tree-shaking when disabled
- Guard all detection processing, loops, and value handlers
- Hide detection overlay when auto-detection is disabled
- Remove vision toggle button from ActiveSession (no longer needed)
- Clean up unused imports and code
- Format fixes from biome

The camera feed still works for observation mode, but the ML/CV
bead detection is disabled until accuracy is improved.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 15:55:50 -06:00
Thomas Hallock
a8fb77e8e3 fix(vision): include remote camera in isVisionSetupComplete check
The isVisionSetupComplete flag was only checking for local camera
setup (cameraDeviceId + calibration), which caused remote camera
mode to be treated as "not configured" even when connected.

Now considers vision setup complete if either:
- Local camera: has camera device AND calibration
- Remote camera: has remote session ID (phone handles calibration)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 15:36:27 -06:00
Thomas Hallock
e80ef04f45 chore(vision): clean up debug console.log statements
Remove unnecessary debug logging from vision components
that was used during development.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 15:31:06 -06:00
Thomas Hallock
b3b769c0e2 feat(vision): broadcast vision frames to observers (Phase 5)
Wire up the vision broadcast pipeline:

1. DockedVisionFeed captures rectified frames from canvas and emits
   them at 5fps via the context's emitVisionFrame callback

2. PracticeClient wires setVisionFrameCallback to call sendVisionFrame
   from useSessionBroadcast, connecting the context to the socket

3. useSessionBroadcast sends VisionFrameEvent to the session channel
   with imageData, detectedValue, and confidence

4. socket-server relays vision-frame events to observers

5. useSessionObserver receives and stores visionFrame for display

6. SessionObserverModal shows ObserverVisionFeed when visionFrame
   is available, replacing the interactive AbacusDock with the
   student's live camera feed

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 15:28:59 -06:00
Thomas Hallock
ff59612e7b fix(vision): clear config when switching camera sources
When switching between local and phone camera, clear the other
source's configuration to prevent stale data.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 15:13:20 -06:00
Thomas Hallock
d8c764595d feat(vision): integrate vision feed into docked abacus
- Add vision state management to MyAbacusContext (camera, calibration,
  remote session, enabled state)
- Add VisionIndicator component showing vision status on dock header
- Add VisionSetupModal for configuring camera and calibration
- Add DockedVisionFeed component that replaces SVG abacus when vision
  is enabled, with:
  - Continuous ArUco marker detection for auto-calibration
  - OpenCV perspective correction via VisionCameraFeed
  - Real-time bead detection and value display
  - Support for both local camera and remote phone camera
- Wire AbacusVisionBridge to save config to context via
  onConfigurationChange callback
- Update MyAbacus to conditionally render DockedVisionFeed vs
  AbacusReact based on vision state

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 15:05:58 -06:00
Thomas Hallock
005140a1e7 feat(vision): add CV-based bead detection and fix remote camera connection
- Add beadDetector.ts with intensity-profile-based bead detection (CV approach)
- Integrate CV pipeline for both local camera and remote phone camera feeds
- Add processImageFrame() to frameProcessor for remote camera image processing
- Fix React 18 Strict Mode duplicate session creation in RemoteCameraQRCode
- Add debug logging to remote camera hooks for connection troubleshooting
- Add VisionStatusIndicator for remote camera feed in AbacusVisionBridge

The duplicate session bug was caused by React 18 Strict Mode double-mounting
components and running effects twice with fresh state, which called
createSession() twice and created two different sessions - phone joined
one, desktop subscribed to the other.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-01 11:29:02 -06:00
Thomas Hallock
5d0ac65bdd feat(vision): add TensorFlow.js column classifier model and improve detection
- Add trained CNN model for abacus column digit classification
  - model.json: TensorFlow.js layers model (fixed for Keras 3 compatibility)
  - group1-shard1of1.bin: quantized model weights (~2.2MB)

- Improve detection performance and stability
  - Throttle inference to 5fps (was running every animation frame)
  - Lower stability threshold: 3 consecutive frames (was 10)
  - Lower confidence threshold: 50% (was 70%)

- Clean up debug logging from development

Note: Model trained on synthetic data, accuracy on real images is limited.
Future work: retrain on real abacus photos for better accuracy.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-31 22:59:40 -06:00
Thomas Hallock
7a9185eadb fix(vision): hide flip camera button when only one camera available
Only show camera controls section when there's something to display:
- Flip button: only if multiple cameras
- Torch button: only if torch available
- Whole section: only if either button would be shown

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-31 22:35:52 -06:00
semantic-release-bot
da97ad0675 chore(abacus-react): release v2.19.0 [skip ci]
# [2.19.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.18.0...abacus-react-v2.19.0) (2026-01-01)

### Features

* **vision:** add physical abacus column setting and fix remote flash toggle ([b206eb3](b206eb3071))
* **vision:** improve remote camera calibration and UX ([8846cec](8846cece93))
2026-01-01 04:35:16 +00:00
Thomas Hallock
b206eb3071 feat(vision): add physical abacus column setting and fix remote flash toggle
Physical Abacus Columns Setting:
- Add physicalAbacusColumns to AbacusDisplayConfig (default: 4)
- Add database column with migration 0054
- Add slider UI in AbacusDisplayDropdown (range 1-21)
- Update AbacusVisionBridge to use setting instead of calculating from problem

Remote Camera Flash Toggle Fix:
- Add socket events for torch sync (set-torch, torch-state)
- Phone reports torch state to desktop on change/connection
- Desktop can control phone's torch remotely
- Add torch button in AbacusVisionBridge for phone camera mode
- Both local and remote flash toggles now work correctly

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-31 22:33:58 -06:00
Thomas Hallock
8846cece93 feat(vision): improve remote camera calibration and UX
- Fix remote camera autocrop rotation by swapping ArUco corners for phone camera
  (detectMarkers assumes Desk View orientation which is 180° rotated)
- Add rotate left/right buttons to CalibrationOverlay for manual calibration
- Fix mode switching bug: switching to auto mode now clears desktop calibration
  on phone via new 'remote-camera:clear-calibration' socket event
- Add copy button to QR code URL with visual feedback
- Fix text selection spanning into video feed with userSelect: none
- Add flip camera and torch controls to local camera UI
- Add session persistence for remote camera reconnection
- Fix 4:3 aspect ratio for cropped abacus output

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-31 22:04:06 -06:00
53 changed files with 23533 additions and 8566 deletions

View File

@@ -422,7 +422,47 @@
"Bash(apps/web/src/lib/vision/perspectiveTransform.ts )",
"Bash(apps/web/src/socket-server.ts)",
"Bash(apps/web/src/components/vision/CalibrationOverlay.tsx )",
"Bash(apps/web/src/components/practice/ActiveSession.tsx )"
"Bash(apps/web/src/components/practice/ActiveSession.tsx )",
"Bash(open -a Preview:*)",
"Bash(pip3 install:*)",
"Bash(pip3 uninstall:*)",
"Bash(/opt/homebrew/bin/python3:*)",
"Bash(/usr/bin/python3:*)",
"Bash(/opt/homebrew/bin/pip3 install:*)",
"Bash(source:*)",
"Bash(pip install:*)",
"Bash(/opt/homebrew/opt/python@3.11/bin/python3.11:*)",
"Bash(tensorflowjs_converter:*)",
"Bash(public/models/abacus-column-classifier/column-classifier.keras )",
"Bash(public/models/abacus-column-classifier/)",
"Bash(public/models/abacus-column-classifier/column-classifier.h5 )",
"Bash(apps/web/scripts/train-column-classifier/train_model.py )",
"Bash(apps/web/src/app/remote-camera/[sessionId]/page.tsx )",
"Bash(apps/web/src/hooks/useColumnClassifier.ts )",
"Bash(apps/web/src/lib/vision/columnClassifier.ts )",
"Bash(\"apps/web/src/app/remote-camera/[sessionId]/page.tsx\" )",
"Bash(apps/web/drizzle/0054_new_mathemanic.sql )",
"Bash(apps/web/drizzle/meta/0054_snapshot.json )",
"Bash(apps/web/src/components/AbacusDisplayDropdown.tsx )",
"Bash(apps/web/src/db/schema/abacus-settings.ts )",
"Bash(packages/abacus-react/src/AbacusContext.tsx)",
"Bash(apps/web/src/lib/vision/frameProcessor.ts )",
"Bash(apps/web/src/lib/vision/beadDetector.ts )",
"Bash(apps/web/public/models/abacus-column-classifier/model.json )",
"Bash(.claude/settings.local.json)",
"Bash(apps/web/src/components/MyAbacus.tsx )",
"Bash(apps/web/src/contexts/MyAbacusContext.tsx )",
"Bash(apps/web/src/components/vision/DockedVisionFeed.tsx )",
"Bash(apps/web/src/components/vision/VisionIndicator.tsx )",
"Bash(apps/web/src/components/vision/VisionSetupModal.tsx)",
"Bash(npx storybook:*)",
"Bash(apps/web/src/hooks/usePhoneCamera.ts )",
"Bash(apps/web/src/lib/remote-camera/session-manager.ts )",
"Bash(apps/web/src/test/setup.ts )",
"Bash(apps/web/src/hooks/__tests__/useRemoteCameraDesktop.test.ts )",
"Bash(apps/web/src/hooks/__tests__/useRemoteCameraPhone.test.ts )",
"Bash(apps/web/src/lib/remote-camera/__tests__/)",
"Bash(packages/abacus-react/CHANGELOG.md )"
],
"deny": [],
"ask": []

View File

@@ -0,0 +1,2 @@
-- Add physical_abacus_columns column to abacus_settings table
ALTER TABLE `abacus_settings` ADD `physical_abacus_columns` integer DEFAULT 4 NOT NULL;

File diff suppressed because it is too large Load Diff

View File

@@ -379,6 +379,13 @@
"when": 1767208127241,
"tag": "0053_premium_expediter",
"breakpoints": true
},
{
"idx": 54,
"version": "6",
"when": 1767240895813,
"tag": "0054_new_mathemanic",
"breakpoints": true
}
]
}

View File

@@ -0,0 +1,778 @@
{
"format": "layers-model",
"generatedBy": "keras v3.13.0",
"convertedBy": "TensorFlow.js Converter v4.22.0",
"modelTopology": {
"keras_version": "3.13.0",
"backend": "tensorflow",
"model_config": {
"class_name": "Sequential",
"config": {
"name": "sequential",
"trainable": true,
"dtype": "float32",
"layers": [
{
"class_name": "InputLayer",
"config": {
"dtype": "float32",
"sparse": false,
"ragged": false,
"name": "input_layer",
"optional": false,
"batchInputShape": [null, 128, 64, 1]
}
},
{
"class_name": "Conv2D",
"config": {
"name": "conv2d",
"trainable": true,
"dtype": "float32",
"filters": 32,
"kernel_size": [3, 3],
"strides": [1, 1],
"padding": "same",
"data_format": "channels_last",
"dilation_rate": [1, 1],
"groups": 1,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": {
"seed": null
},
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization",
"trainable": true,
"dtype": "float32",
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "MaxPooling2D",
"config": {
"name": "max_pooling2d",
"trainable": true,
"dtype": "float32",
"pool_size": [2, 2],
"padding": "valid",
"strides": [2, 2],
"data_format": "channels_last"
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout",
"trainable": true,
"dtype": "float32",
"rate": 0.25,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Conv2D",
"config": {
"name": "conv2d_1",
"trainable": true,
"dtype": "float32",
"filters": 64,
"kernel_size": [3, 3],
"strides": [1, 1],
"padding": "same",
"data_format": "channels_last",
"dilation_rate": [1, 1],
"groups": 1,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": {
"seed": null
},
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization_1",
"trainable": true,
"dtype": "float32",
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "MaxPooling2D",
"config": {
"name": "max_pooling2d_1",
"trainable": true,
"dtype": "float32",
"pool_size": [2, 2],
"padding": "valid",
"strides": [2, 2],
"data_format": "channels_last"
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout_1",
"trainable": true,
"dtype": "float32",
"rate": 0.25,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Conv2D",
"config": {
"name": "conv2d_2",
"trainable": true,
"dtype": "float32",
"filters": 128,
"kernel_size": [3, 3],
"strides": [1, 1],
"padding": "same",
"data_format": "channels_last",
"dilation_rate": [1, 1],
"groups": 1,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": {
"seed": null
},
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization_2",
"trainable": true,
"dtype": "float32",
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "MaxPooling2D",
"config": {
"name": "max_pooling2d_2",
"trainable": true,
"dtype": "float32",
"pool_size": [2, 2],
"padding": "valid",
"strides": [2, 2],
"data_format": "channels_last"
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout_2",
"trainable": true,
"dtype": "float32",
"rate": 0.25,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Flatten",
"config": {
"name": "flatten",
"trainable": true,
"dtype": "float32",
"data_format": "channels_last"
}
},
{
"class_name": "Dense",
"config": {
"name": "dense",
"trainable": true,
"dtype": "float32",
"units": 128,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": {
"seed": null
},
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null,
"quantization_config": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization_3",
"trainable": true,
"dtype": "float32",
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout_3",
"trainable": true,
"dtype": "float32",
"rate": 0.5,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Dense",
"config": {
"name": "dense_1",
"trainable": true,
"dtype": "float32",
"units": 10,
"activation": "softmax",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": {
"seed": null
},
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null,
"quantization_config": null
}
}
],
"build_input_shape": [null, 128, 64, 1]
}
},
"training_config": {
"loss": "sparse_categorical_crossentropy",
"loss_weights": null,
"metrics": ["accuracy"],
"weighted_metrics": null,
"run_eagerly": false,
"steps_per_execution": 1,
"jit_compile": false,
"optimizer_config": {
"class_name": "Adam",
"config": {
"name": "adam",
"learning_rate": 0.0010000000474974513,
"weight_decay": null,
"clipnorm": null,
"global_clipnorm": null,
"clipvalue": null,
"use_ema": false,
"ema_momentum": 0.99,
"ema_overwrite_frequency": null,
"loss_scale_factor": null,
"gradient_accumulation_steps": null,
"beta_1": 0.9,
"beta_2": 0.999,
"epsilon": 1e-7,
"amsgrad": false
}
}
}
},
"weightsManifest": [
{
"paths": ["group1-shard1of1.bin"],
"weights": [
{
"name": "batch_normalization/gamma",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.970035195350647,
"scale": 0.00039288062675326476,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization/beta",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.04866361422281639,
"scale": 0.00040217862994063134,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization/moving_mean",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.000010939256753772497,
"scale": 0.001048501559268391,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization/moving_variance",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.000532817910425365,
"scale": 0.00016297123568388176,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/gamma",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.9726127982139587,
"scale": 0.00019898110744999905,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/beta",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.06264814909766703,
"scale": 0.00037290564939087515,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/moving_mean",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.12544548511505127,
"scale": 0.001907470179539101,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/moving_variance",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.042508192360401154,
"scale": 0.002489794206385519,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/gamma",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.975760817527771,
"scale": 0.0003113854165170707,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/beta",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.023137448749998037,
"scale": 0.00013072004943501716,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/moving_mean",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.015866611152887344,
"scale": 0.005222073358063605,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/moving_variance",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.01432291604578495,
"scale": 0.00944612571860061,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/gamma",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.9765098690986633,
"scale": 0.0008689317048764697,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/beta",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.05253423078387391,
"scale": 0.00032833894239921196,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/moving_mean",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 2.3402893845059225e-8,
"scale": 0.124165194550534,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/moving_variance",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.000532600621227175,
"scale": 0.8092722632006888,
"original_dtype": "float32"
}
},
{
"name": "conv2d/kernel",
"shape": [3, 3, 1, 32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.1684967933916578,
"scale": 0.0012961291799358293,
"original_dtype": "float32"
}
},
{
"name": "conv2d/bias",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.014791351323034248,
"scale": 0.00019462304372413485,
"original_dtype": "float32"
}
},
{
"name": "conv2d_1/kernel",
"shape": [3, 3, 32, 64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.14185832411635155,
"scale": 0.0010912178778180888,
"original_dtype": "float32"
}
},
{
"name": "conv2d_1/bias",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.052345379924072934,
"scale": 0.00033341006321065564,
"original_dtype": "float32"
}
},
{
"name": "conv2d_2/kernel",
"shape": [3, 3, 64, 128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.09215074052997664,
"scale": 0.0007199276603904425,
"original_dtype": "float32"
}
},
{
"name": "conv2d_2/bias",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.052666782806901374,
"scale": 0.00035346834098591524,
"original_dtype": "float32"
}
},
{
"name": "dense/kernel",
"shape": [16384, 128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.1078803108311167,
"scale": 0.0006960020053620432,
"original_dtype": "float32"
}
},
{
"name": "dense/bias",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.010696043731535184,
"scale": 0.00013539295862702763,
"original_dtype": "float32"
}
},
{
"name": "dense_1/kernel",
"shape": [128, 10],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.26071277062098186,
"scale": 0.002190863618663713,
"original_dtype": "float32"
}
},
{
"name": "dense_1/bias",
"shape": [10],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.020677046455881174,
"scale": 0.00016028718182853623,
"original_dtype": "float32"
}
}
]
}
]
}

View File

@@ -0,0 +1,858 @@
{
"format": "layers-model",
"generatedBy": "keras v3.13.0",
"convertedBy": "TensorFlow.js Converter v4.22.0",
"modelTopology": {
"keras_version": "3.13.0",
"backend": "tensorflow",
"model_config": {
"class_name": "Sequential",
"config": {
"name": "sequential",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"layers": [
{
"class_name": "InputLayer",
"config": {
"batch_shape": [null, 128, 64, 1],
"dtype": "float32",
"sparse": false,
"ragged": false,
"name": "input_layer",
"optional": false
}
},
{
"class_name": "Conv2D",
"config": {
"name": "conv2d",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"filters": 32,
"kernel_size": [3, 3],
"strides": [1, 1],
"padding": "same",
"data_format": "channels_last",
"dilation_rate": [1, 1],
"groups": 1,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": { "seed": null },
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "MaxPooling2D",
"config": {
"name": "max_pooling2d",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"pool_size": [2, 2],
"padding": "valid",
"strides": [2, 2],
"data_format": "channels_last"
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"rate": 0.25,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Conv2D",
"config": {
"name": "conv2d_1",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"filters": 64,
"kernel_size": [3, 3],
"strides": [1, 1],
"padding": "same",
"data_format": "channels_last",
"dilation_rate": [1, 1],
"groups": 1,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": { "seed": null },
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization_1",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "MaxPooling2D",
"config": {
"name": "max_pooling2d_1",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"pool_size": [2, 2],
"padding": "valid",
"strides": [2, 2],
"data_format": "channels_last"
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout_1",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"rate": 0.25,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Conv2D",
"config": {
"name": "conv2d_2",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"filters": 128,
"kernel_size": [3, 3],
"strides": [1, 1],
"padding": "same",
"data_format": "channels_last",
"dilation_rate": [1, 1],
"groups": 1,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": { "seed": null },
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization_2",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "MaxPooling2D",
"config": {
"name": "max_pooling2d_2",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"pool_size": [2, 2],
"padding": "valid",
"strides": [2, 2],
"data_format": "channels_last"
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout_2",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"rate": 0.25,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Flatten",
"config": {
"name": "flatten",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"data_format": "channels_last"
}
},
{
"class_name": "Dense",
"config": {
"name": "dense",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"units": 128,
"activation": "relu",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": { "seed": null },
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null,
"quantization_config": null
}
},
{
"class_name": "BatchNormalization",
"config": {
"name": "batch_normalization_3",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"axis": -1,
"momentum": 0.99,
"epsilon": 0.001,
"center": true,
"scale": true,
"beta_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"gamma_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"moving_mean_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"moving_variance_initializer": {
"module": "keras.initializers",
"class_name": "Ones",
"config": {},
"registered_name": null
},
"beta_regularizer": null,
"gamma_regularizer": null,
"beta_constraint": null,
"gamma_constraint": null,
"synchronized": false
}
},
{
"class_name": "Dropout",
"config": {
"name": "dropout_3",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"rate": 0.5,
"seed": null,
"noise_shape": null
}
},
{
"class_name": "Dense",
"config": {
"name": "dense_1",
"trainable": true,
"dtype": {
"module": "keras",
"class_name": "DTypePolicy",
"config": { "name": "float32" },
"registered_name": null
},
"units": 10,
"activation": "softmax",
"use_bias": true,
"kernel_initializer": {
"module": "keras.initializers",
"class_name": "GlorotUniform",
"config": { "seed": null },
"registered_name": null
},
"bias_initializer": {
"module": "keras.initializers",
"class_name": "Zeros",
"config": {},
"registered_name": null
},
"kernel_regularizer": null,
"bias_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null,
"quantization_config": null
}
}
],
"build_input_shape": [null, 128, 64, 1]
}
},
"training_config": {
"loss": "sparse_categorical_crossentropy",
"loss_weights": null,
"metrics": ["accuracy"],
"weighted_metrics": null,
"run_eagerly": false,
"steps_per_execution": 1,
"jit_compile": false,
"optimizer_config": {
"class_name": "Adam",
"config": {
"name": "adam",
"learning_rate": 0.0010000000474974513,
"weight_decay": null,
"clipnorm": null,
"global_clipnorm": null,
"clipvalue": null,
"use_ema": false,
"ema_momentum": 0.99,
"ema_overwrite_frequency": null,
"loss_scale_factor": null,
"gradient_accumulation_steps": null,
"beta_1": 0.9,
"beta_2": 0.999,
"epsilon": 1e-7,
"amsgrad": false
}
}
}
},
"weightsManifest": [
{
"paths": ["group1-shard1of1.bin"],
"weights": [
{
"name": "batch_normalization/gamma",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.970035195350647,
"scale": 0.00039288062675326476,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization/beta",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.04866361422281639,
"scale": 0.00040217862994063134,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization/moving_mean",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 1.0939256753772497e-5,
"scale": 0.001048501559268391,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization/moving_variance",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.000532817910425365,
"scale": 0.00016297123568388176,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/gamma",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.9726127982139587,
"scale": 0.00019898110744999905,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/beta",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.06264814909766703,
"scale": 0.00037290564939087515,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/moving_mean",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.12544548511505127,
"scale": 0.001907470179539101,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_1/moving_variance",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.042508192360401154,
"scale": 0.002489794206385519,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/gamma",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.975760817527771,
"scale": 0.0003113854165170707,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/beta",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.023137448749998037,
"scale": 0.00013072004943501716,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/moving_mean",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.015866611152887344,
"scale": 0.005222073358063605,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_2/moving_variance",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.01432291604578495,
"scale": 0.00944612571860061,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/gamma",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.9765098690986633,
"scale": 0.0008689317048764697,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/beta",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.05253423078387391,
"scale": 0.00032833894239921196,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/moving_mean",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 2.3402893845059225e-8,
"scale": 0.124165194550534,
"original_dtype": "float32"
}
},
{
"name": "batch_normalization_3/moving_variance",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": 0.000532600621227175,
"scale": 0.8092722632006888,
"original_dtype": "float32"
}
},
{
"name": "conv2d/kernel",
"shape": [3, 3, 1, 32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.1684967933916578,
"scale": 0.0012961291799358293,
"original_dtype": "float32"
}
},
{
"name": "conv2d/bias",
"shape": [32],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.014791351323034248,
"scale": 0.00019462304372413485,
"original_dtype": "float32"
}
},
{
"name": "conv2d_1/kernel",
"shape": [3, 3, 32, 64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.14185832411635155,
"scale": 0.0010912178778180888,
"original_dtype": "float32"
}
},
{
"name": "conv2d_1/bias",
"shape": [64],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.052345379924072934,
"scale": 0.00033341006321065564,
"original_dtype": "float32"
}
},
{
"name": "conv2d_2/kernel",
"shape": [3, 3, 64, 128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.09215074052997664,
"scale": 0.0007199276603904425,
"original_dtype": "float32"
}
},
{
"name": "conv2d_2/bias",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.052666782806901374,
"scale": 0.00035346834098591524,
"original_dtype": "float32"
}
},
{
"name": "dense/kernel",
"shape": [16384, 128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.1078803108311167,
"scale": 0.0006960020053620432,
"original_dtype": "float32"
}
},
{
"name": "dense/bias",
"shape": [128],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.010696043731535184,
"scale": 0.00013539295862702763,
"original_dtype": "float32"
}
},
{
"name": "dense_1/kernel",
"shape": [128, 10],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.26071277062098186,
"scale": 0.002190863618663713,
"original_dtype": "float32"
}
},
{
"name": "dense_1/bias",
"shape": [10],
"dtype": "float32",
"quantization": {
"dtype": "uint8",
"min": -0.020677046455881174,
"scale": 0.00016028718182853623,
"original_dtype": "float32"
}
}
]
}
]
}

View File

@@ -305,14 +305,16 @@ def main():
print("Install with: pip install tensorflow")
sys.exit(1)
# Check tensorflowjs is available
# Check tensorflowjs is available (optional - can convert later)
tfjs_available = False
try:
import tensorflowjs
print(f"TensorFlow.js converter version: {tensorflowjs.__version__}")
except ImportError:
print("Error: tensorflowjs not installed")
print("Install with: pip install tensorflowjs")
sys.exit(1)
tfjs_available = True
except (ImportError, AttributeError) as e:
print(f"Note: tensorflowjs not available ({type(e).__name__})")
print("Model will be saved as Keras format. Convert later with:")
print(" tensorflowjs_converter --input_format=keras model.keras output_dir/")
print()
@@ -352,9 +354,14 @@ def main():
# Save Keras model
save_keras_model(model, args.output_dir)
# Export to TensorFlow.js
print("\nExporting to TensorFlow.js format...")
export_to_tfjs(model, args.output_dir)
# Export to TensorFlow.js (if available)
if tfjs_available:
print("\nExporting to TensorFlow.js format...")
export_to_tfjs(model, args.output_dir)
else:
print("\nSkipping TensorFlow.js export (tensorflowjs not available)")
print("Convert later with:")
print(f" tensorflowjs_converter --input_format=keras {args.output_dir}/column-classifier.keras {args.output_dir}")
print("\nTraining complete!")
print(f"Model files saved to: {args.output_dir}")

View File

@@ -1,8 +1,9 @@
'use client'
import { useRouter } from 'next/navigation'
import { useCallback, useMemo, useState } from 'react'
import { useCallback, useEffect, useMemo, useState } from 'react'
import { useToast } from '@/components/common/ToastContext'
import { useMyAbacus } from '@/contexts/MyAbacusContext'
import { PageWithNav } from '@/components/PageWithNav'
import {
ActiveSession,
@@ -43,6 +44,7 @@ interface PracticeClientProps {
export function PracticeClient({ studentId, player, initialSession }: PracticeClientProps) {
const router = useRouter()
const { showError } = useToast()
const { setVisionFrameCallback } = useMyAbacus()
// Track pause state for HUD display (ActiveSession owns the modal and actual pause logic)
const [isPaused, setIsPaused] = useState(false)
@@ -168,7 +170,7 @@ export function PracticeClient({ studentId, player, initialSession }: PracticeCl
// broadcastState is updated by ActiveSession via the onBroadcastStateChange callback
// onAbacusControl receives control events from observing teacher
// onTeacherPause/onTeacherResume receive pause/resume commands from teacher
const { sendPartTransition, sendPartTransitionComplete } = useSessionBroadcast(
const { sendPartTransition, sendPartTransitionComplete, sendVisionFrame } = useSessionBroadcast(
currentPlan.id,
studentId,
broadcastState,
@@ -179,6 +181,17 @@ export function PracticeClient({ studentId, player, initialSession }: PracticeCl
}
)
// Wire vision frame callback to broadcast vision frames to observers
useEffect(() => {
setVisionFrameCallback((frame) => {
sendVisionFrame(frame.imageData, frame.detectedValue, frame.confidence)
})
return () => {
setVisionFrameCallback(null)
}
}, [setVisionFrameCallback, sendVisionFrame])
// Build session HUD data for PracticeSubNav
const sessionHud: SessionHudData | undefined = currentPart
? {

View File

@@ -39,9 +39,10 @@ export default function RemoteCameraPage() {
stop: stopCamera,
flipCamera,
toggleTorch,
setTorch,
} = usePhoneCamera({ initialFacingMode: 'environment' })
// Remote camera connection
// Remote camera connection - pass setTorch for desktop control
const {
isConnected,
isSending,
@@ -54,7 +55,10 @@ export default function RemoteCameraPage() {
stopSending,
updateCalibration,
setFrameMode,
} = useRemoteCameraPhone()
emitTorchState,
} = useRemoteCameraPhone({
onTorchRequest: setTorch,
})
// Auto-detection state
const [calibration, setCalibration] = useState<CalibrationGrid | null>(null)
@@ -90,9 +94,13 @@ export default function RemoteCameraPage() {
// Validate session on mount
useEffect(() => {
async function validateSession() {
console.log('[RemoteCameraPage] Validating session:', sessionId)
try {
const response = await fetch(`/api/remote-camera?sessionId=${sessionId}`)
console.log('[RemoteCameraPage] Session validation response:', response.status)
if (response.ok) {
const data = await response.json()
console.log('[RemoteCameraPage] Session valid:', data)
setSessionStatus('connected')
} else if (response.status === 404) {
setSessionStatus('expired')
@@ -103,6 +111,7 @@ export default function RemoteCameraPage() {
setSessionError(data.error || 'Failed to validate session')
}
} catch (err) {
console.error('[RemoteCameraPage] Session validation error:', err)
setSessionStatus('error')
setSessionError('Network error')
}
@@ -137,6 +146,13 @@ export default function RemoteCameraPage() {
}
}, [isConnected, videoStream, isCameraLoading, startCamera])
// Emit torch state to desktop when it changes or when connected
useEffect(() => {
if (isConnected) {
emitTorchState(isTorchOn, isTorchAvailable)
}
}, [isConnected, isTorchOn, isTorchAvailable, emitTorchState])
// Handle video ready - start sending immediately
const handleVideoReady = useCallback(
(width: number, height: number) => {
@@ -182,8 +198,12 @@ export default function RemoteCameraPage() {
if (isSending) {
updateCalibration(desktopCalibration)
}
} else if (usingDesktopCalibration) {
// Desktop cleared calibration - go back to auto-detection
setUsingDesktopCalibration(false)
setCalibration(null)
}
}, [desktopCalibration, isSending, updateCalibration])
}, [desktopCalibration, isSending, updateCalibration, usingDesktopCalibration])
// Auto-detect markers (always runs unless using desktop calibration)
useEffect(() => {
@@ -201,18 +221,28 @@ export default function RemoteCameraPage() {
if (result.allMarkersFound && result.quadCorners) {
// Auto-calibration successful!
// NOTE: detectMarkers() returns corners swapped for Desk View camera (180° rotated).
// Phone camera is NOT Desk View, so we need to swap corners back to get correct orientation.
// detectMarkers maps: marker 2 (physical BR) → topLeft, marker 0 (physical TL) → bottomRight
// For phone camera we need: marker 0 (physical TL) → topLeft, marker 2 (physical BR) → bottomRight
const phoneCorners = {
topLeft: result.quadCorners.bottomRight, // marker 0 (physical TL)
topRight: result.quadCorners.bottomLeft, // marker 1 (physical TR)
bottomRight: result.quadCorners.topLeft, // marker 2 (physical BR)
bottomLeft: result.quadCorners.topRight, // marker 3 (physical BL)
}
const grid: CalibrationGrid = {
roi: {
x: Math.min(result.quadCorners.topLeft.x, result.quadCorners.bottomLeft.x),
y: Math.min(result.quadCorners.topLeft.y, result.quadCorners.topRight.y),
x: Math.min(phoneCorners.topLeft.x, phoneCorners.bottomLeft.x),
y: Math.min(phoneCorners.topLeft.y, phoneCorners.topRight.y),
width:
Math.max(result.quadCorners.topRight.x, result.quadCorners.bottomRight.x) -
Math.min(result.quadCorners.topLeft.x, result.quadCorners.bottomLeft.x),
Math.max(phoneCorners.topRight.x, phoneCorners.bottomRight.x) -
Math.min(phoneCorners.topLeft.x, phoneCorners.bottomLeft.x),
height:
Math.max(result.quadCorners.bottomLeft.y, result.quadCorners.bottomRight.y) -
Math.min(result.quadCorners.topLeft.y, result.quadCorners.topRight.y),
Math.max(phoneCorners.bottomLeft.y, phoneCorners.bottomRight.y) -
Math.min(phoneCorners.topLeft.y, phoneCorners.topRight.y),
},
corners: result.quadCorners,
corners: phoneCorners,
columnCount: 13,
columnDividers: Array.from({ length: 12 }, (_, i) => (i + 1) / 13),
rotation: 0,
@@ -221,7 +251,7 @@ export default function RemoteCameraPage() {
// Update the calibration for the sending loop and switch to cropped mode
// BUT: don't switch to cropped if desktop is actively calibrating (they need raw frames)
if (isSending && !desktopIsCalibrating) {
updateCalibration(result.quadCorners)
updateCalibration(phoneCorners)
setFrameMode('cropped')
}
}

View File

@@ -287,6 +287,86 @@ export function AbacusDisplayDropdown({
isDark={isDark}
/>
</FormField>
<FormField
label={`Physical Abacus Columns: ${config.physicalAbacusColumns}`}
isFullscreen={isFullscreen}
isDark={isDark}
>
<div className={hstack({ gap: '2', alignItems: 'center' })}>
<input
type="range"
min="1"
max="21"
step="1"
value={config.physicalAbacusColumns}
onChange={(e) =>
updateConfig({
physicalAbacusColumns: parseInt(e.target.value, 10),
})
}
className={css({
flex: 1,
h: '2',
bg: isFullscreen
? 'rgba(255, 255, 255, 0.2)'
: isDark
? 'gray.700'
: 'gray.200',
rounded: 'full',
appearance: 'none',
cursor: 'pointer',
_focusVisible: {
outline: 'none',
ring: '2px',
ringColor: isFullscreen ? 'blue.400' : 'brand.500',
},
'&::-webkit-slider-thumb': {
appearance: 'none',
w: '4',
h: '4',
bg: isFullscreen ? 'blue.400' : 'brand.600',
rounded: 'full',
cursor: 'pointer',
transition: 'all',
_hover: {
bg: isFullscreen ? 'blue.500' : 'brand.700',
transform: 'scale(1.1)',
},
},
'&::-moz-range-thumb': {
w: '4',
h: '4',
bg: isFullscreen ? 'blue.400' : 'brand.600',
rounded: 'full',
border: 'none',
cursor: 'pointer',
},
})}
onClick={(e) => e.stopPropagation()}
/>
<span
className={css({
fontSize: 'sm',
fontWeight: 'medium',
color: isFullscreen ? 'white' : isDark ? 'gray.200' : 'gray.700',
minW: '6',
textAlign: 'right',
})}
>
{config.physicalAbacusColumns}
</span>
</div>
<p
className={css({
fontSize: 'xs',
color: isFullscreen ? 'gray.400' : isDark ? 'gray.500' : 'gray.500',
mt: '1',
})}
>
For camera vision detection
</p>
</FormField>
</div>
</div>
</DropdownMenu.Content>

View File

@@ -9,6 +9,9 @@ import { createRoot } from 'react-dom/client'
import { HomeHeroContext } from '@/contexts/HomeHeroContext'
import { type DockAnimationState, useMyAbacus } from '@/contexts/MyAbacusContext'
import { useTheme } from '@/contexts/ThemeContext'
import { DockedVisionFeed } from '@/components/vision/DockedVisionFeed'
import { VisionIndicator } from '@/components/vision/VisionIndicator'
import { VisionSetupModal } from '@/components/vision/VisionSetupModal'
import { css } from '../../styled-system/css'
/**
@@ -85,6 +88,8 @@ export function MyAbacus() {
clearDockRequest,
abacusValue: contextAbacusValue,
setDockedValue,
visionConfig,
isVisionSetupComplete,
} = useMyAbacus()
const appConfig = useAbacusConfig()
const pathname = usePathname()
@@ -493,6 +498,9 @@ export function MyAbacus() {
position: 'relative',
})}
>
{/* Vision indicator - positioned at top-right, before undock button */}
<VisionIndicator size="small" position="top-left" />
{/* Undock button - positioned at top-right of dock container */}
<button
data-action="undock-abacus"
@@ -536,44 +544,67 @@ export function MyAbacus() {
data-element="abacus-display"
className={css({
filter: 'drop-shadow(0 4px 12px rgba(251, 191, 36, 0.2))',
width: '100%',
height: '100%',
})}
>
<AbacusReact
key="docked"
value={dock.value ?? abacusValue}
defaultValue={dock.defaultValue}
columns={dock.columns ?? 5}
scaleFactor={effectiveScaleFactor}
beadShape={appConfig.beadShape}
showNumbers={dock.showNumbers ?? true}
interactive={dock.interactive ?? true}
animated={dock.animated ?? true}
customStyles={structuralStyles}
onValueChange={(newValue: number | bigint) => {
const numValue = Number(newValue)
// Update the appropriate state based on dock mode
// (unless dock provides its own value prop for full control)
if (dock.value === undefined) {
// When docked by user, update context value; otherwise update local/hero
if (isDockedByUser) {
setDockedValue(numValue)
} else {
setAbacusValue(numValue)
{/* Show vision feed when enabled, otherwise show digital abacus */}
{visionConfig.enabled && isVisionSetupComplete ? (
<DockedVisionFeed
columnCount={dock.columns ?? 5}
onValueDetected={(value) => {
// Update the appropriate state based on dock mode
if (dock.value === undefined) {
if (isDockedByUser) {
setDockedValue(value)
} else {
setAbacusValue(value)
}
}
}
// Also call dock's callback if provided
if (dock.onValueChange) {
dock.onValueChange(numValue)
}
}}
enhanced3d="realistic"
material3d={{
heavenBeads: 'glossy',
earthBeads: 'satin',
lighting: 'dramatic',
woodGrain: true,
}}
/>
// Also call dock's callback if provided
if (dock.onValueChange) {
dock.onValueChange(value)
}
}}
/>
) : (
<AbacusReact
key="docked"
value={dock.value ?? abacusValue}
defaultValue={dock.defaultValue}
columns={dock.columns ?? 5}
scaleFactor={effectiveScaleFactor}
beadShape={appConfig.beadShape}
showNumbers={dock.showNumbers ?? true}
interactive={dock.interactive ?? true}
animated={dock.animated ?? true}
customStyles={structuralStyles}
onValueChange={(newValue: number | bigint) => {
const numValue = Number(newValue)
// Update the appropriate state based on dock mode
// (unless dock provides its own value prop for full control)
if (dock.value === undefined) {
// When docked by user, update context value; otherwise update local/hero
if (isDockedByUser) {
setDockedValue(numValue)
} else {
setAbacusValue(numValue)
}
}
// Also call dock's callback if provided
if (dock.onValueChange) {
dock.onValueChange(numValue)
}
}}
enhanced3d="realistic"
material3d={{
heavenBeads: 'glossy',
earthBeads: 'satin',
lighting: 'dramatic',
woodGrain: true,
}}
/>
)}
</div>
</div>,
dock.element
@@ -820,6 +851,9 @@ export function MyAbacus() {
`,
}}
/>
{/* Vision setup modal - controlled by context state */}
<VisionSetupModal />
</>
)
}

View File

@@ -21,6 +21,7 @@ import { PracticeFeedback } from '../practice/PracticeFeedback'
import { PurposeBadge } from '../practice/PurposeBadge'
import { SessionProgressIndicator } from '../practice/SessionProgressIndicator'
import { VerticalProblem } from '../practice/VerticalProblem'
import { ObserverVisionFeed } from '../vision/ObserverVisionFeed'
interface SessionObserverModalProps {
/** Whether the modal is open */
@@ -162,6 +163,7 @@ export function SessionObserverView({
state,
results,
transitionState,
visionFrame,
isConnected,
isObserving,
error,
@@ -756,15 +758,9 @@ export function SessionObserverView({
/>
</div>
{/* AbacusDock - positioned exactly like ActiveSession */}
{/* Vision feed or AbacusDock - positioned exactly like ActiveSession */}
{state.phase === 'problem' && (problemHeight ?? 0) > 0 && (
<AbacusDock
id="teacher-observer-dock"
columns={abacusColumns}
interactive={true}
showNumbers={false}
animated={true}
onValueChange={handleTeacherAbacusChange}
<div
className={css({
position: 'absolute',
left: '100%',
@@ -773,7 +769,22 @@ export function SessionObserverView({
marginLeft: '1.5rem',
})}
style={{ height: problemHeight ?? undefined }}
/>
>
{/* Show vision feed if available, otherwise show teacher's abacus dock */}
{visionFrame ? (
<ObserverVisionFeed frame={visionFrame} />
) : (
<AbacusDock
id="teacher-observer-dock"
columns={abacusColumns}
interactive={true}
showNumbers={false}
animated={true}
onValueChange={handleTeacherAbacusChange}
style={{ height: '100%' }}
/>
)}
</div>
)}
</div>

View File

@@ -7,8 +7,6 @@ import { useMyAbacus } from '@/contexts/MyAbacusContext'
import { useTheme } from '@/contexts/ThemeContext'
import {
getCurrentProblemInfo,
isInRetryEpoch,
needsRetryTransition,
type ProblemSlot,
type SessionHealth,
type SessionPart,
@@ -36,6 +34,7 @@ export interface StudentInfo {
color: string
}
import { useAbacusDisplay } from '@soroban/abacus-react'
import { AbacusDock } from '../AbacusDock'
import { DecompositionProvider, DecompositionSection } from '../decomposition'
import { Tooltip, TooltipProvider } from '../ui/Tooltip'
@@ -49,8 +48,6 @@ import { PracticeHelpOverlay } from './PracticeHelpOverlay'
import { ProblemDebugPanel } from './ProblemDebugPanel'
import { VerticalProblem } from './VerticalProblem'
import type { ReceivedAbacusControl } from '@/hooks/useSessionBroadcast'
import { AbacusVisionBridge } from '../vision'
import { Z_INDEX } from '@/constants/zIndex'
/**
* Timing data for the current problem attempt
@@ -633,6 +630,9 @@ export function ActiveSession({
// Check if abacus is docked (to force show submit button)
const { isDockedByUser, requestDock, undock, dock, setDockedValue } = useMyAbacus()
// Get abacus display config (for physical abacus column count in vision mode)
const { config: abacusDisplayConfig } = useAbacusDisplay()
// Sound effects
const { playSound } = usePracticeSoundEffects()
@@ -991,9 +991,6 @@ export function ActiveSession({
// Track previous epoch to detect epoch changes
const prevEpochRef = useRef<number>(0)
// Vision mode state - for physical abacus camera detection
const [isVisionEnabled, setIsVisionEnabled] = useState(false)
// Browse mode state - isBrowseMode is controlled via props
// browseIndex can be controlled (browseIndexProp + onBrowseIndexChange) or internal
const [internalBrowseIndex, setInternalBrowseIndex] = useState(0)
@@ -1319,17 +1316,6 @@ export function ActiveSession({
[setAnswer]
)
// Handle value detected from vision (physical abacus camera)
const handleVisionValueDetected = useCallback(
(value: number) => {
// Update the docked abacus to show the detected value
setDockedValue(value)
// Also set the answer input
setAnswer(String(value))
},
[setDockedValue, setAnswer]
)
// Handle submit
const handleSubmit = useCallback(async () => {
// Allow submitting from inputting, awaitingDisambiguation, or helpMode
@@ -1992,56 +1978,22 @@ export function ActiveSession({
{/* Abacus dock - positioned absolutely so it doesn't affect problem centering */}
{/* Width 100% matches problem width, height matches problem height */}
{currentPart.type === 'abacus' && !showHelpOverlay && (problemHeight ?? 0) > 0 && (
<>
<AbacusDock
id="practice-abacus"
columns={calculateAbacusColumns(attempt.problem.terms)}
interactive={true}
showNumbers={false}
animated={true}
onValueChange={handleAbacusDockValueChange}
className={css({
position: 'absolute',
left: '100%',
top: 0,
width: '100%',
marginLeft: '1.5rem',
})}
style={{ height: problemHeight }}
/>
{/* Vision mode toggle button */}
<button
type="button"
data-action="toggle-vision"
data-enabled={isVisionEnabled}
onClick={() => setIsVisionEnabled((prev) => !prev)}
className={css({
position: 'absolute',
left: '100%',
bottom: 0,
marginLeft: '1.5rem',
px: 2,
py: 1,
display: 'flex',
alignItems: 'center',
gap: 1,
fontSize: 'xs',
bg: isVisionEnabled ? 'green.600' : isDark ? 'gray.700' : 'gray.200',
color: isVisionEnabled ? 'white' : isDark ? 'gray.300' : 'gray.700',
border: 'none',
borderRadius: 'md',
cursor: 'pointer',
transition: 'all 0.2s',
_hover: {
bg: isVisionEnabled ? 'green.500' : isDark ? 'gray.600' : 'gray.300',
},
})}
title="Use camera to detect physical abacus"
>
<span>📷</span>
<span>Vision</span>
</button>
</>
<AbacusDock
id="practice-abacus"
columns={calculateAbacusColumns(attempt.problem.terms)}
interactive={true}
showNumbers={false}
animated={true}
onValueChange={handleAbacusDockValueChange}
className={css({
position: 'absolute',
left: '100%',
top: 0,
width: '100%',
marginLeft: '1.5rem',
})}
style={{ height: problemHeight }}
/>
)}
</animated.div>
</animated.div>
@@ -2126,27 +2078,6 @@ export function ActiveSession({
/>
)}
{/* Abacus Vision Bridge - floating camera panel for physical abacus detection */}
{isVisionEnabled && currentPart.type === 'abacus' && attempt && (
<div
data-component="vision-panel"
className={css({
position: 'fixed',
top: '200px', // Below main nav (80px) + sub nav (~56px) + mini sub-nav (~60px)
right: '1rem',
zIndex: Z_INDEX.DROPDOWN, // Above content but below modals
boxShadow: 'xl',
borderRadius: 'xl',
})}
>
<AbacusVisionBridge
columnCount={calculateAbacusColumns(attempt.problem.terms)}
onValueDetected={handleVisionValueDetected}
onClose={() => setIsVisionEnabled(false)}
/>
</div>
)}
{/* Session Paused Modal - rendered here as single source of truth */}
<SessionPausedModal
isOpen={isPaused}

File diff suppressed because it is too large Load Diff

View File

@@ -284,6 +284,32 @@ export function CalibrationOverlay({
dragStartRef.current = null
}, [])
/**
* Rotate corners 90° clockwise or counter-clockwise around the quad center
* This reassigns corner labels, not their positions
*/
const handleRotate = useCallback((direction: 'left' | 'right') => {
setCorners((prev) => {
if (direction === 'right') {
// Rotate 90° clockwise: TL→TR, TR→BR, BR→BL, BL→TL
return {
topLeft: prev.bottomLeft,
topRight: prev.topLeft,
bottomRight: prev.topRight,
bottomLeft: prev.bottomRight,
}
} else {
// Rotate 90° counter-clockwise: TL→BL, BL→BR, BR→TR, TR→TL
return {
topLeft: prev.topRight,
topRight: prev.bottomRight,
bottomRight: prev.bottomLeft,
bottomLeft: prev.topLeft,
}
}
})
}, [])
// Handle complete
const handleComplete = useCallback(() => {
const grid: CalibrationGrid = {
@@ -547,6 +573,51 @@ export function CalibrationOverlay({
gap: 2,
})}
>
{/* Rotation buttons */}
<button
type="button"
onClick={() => handleRotate('left')}
data-action="rotate-left"
className={css({
px: 2,
py: 1.5,
bg: 'blue.600',
color: 'white',
borderRadius: 'md',
fontSize: 'sm',
border: 'none',
cursor: 'pointer',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
_hover: { bg: 'blue.500' },
})}
title="Rotate 90° left"
>
</button>
<button
type="button"
onClick={() => handleRotate('right')}
data-action="rotate-right"
className={css({
px: 2,
py: 1.5,
bg: 'blue.600',
color: 'white',
borderRadius: 'md',
fontSize: 'sm',
border: 'none',
cursor: 'pointer',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
_hover: { bg: 'blue.500' },
})}
title="Rotate 90° right"
>
</button>
<button
type="button"
onClick={onCancel}

View File

@@ -0,0 +1,697 @@
'use client'
import { useCallback, useEffect, useRef, useState } from 'react'
import { useMyAbacus } from '@/contexts/MyAbacusContext'
import { useRemoteCameraDesktop } from '@/hooks/useRemoteCameraDesktop'
import {
cleanupArucoDetector,
detectMarkers,
initArucoDetector,
isArucoAvailable,
loadAruco,
} from '@/lib/vision/arucoDetection'
import { useFrameStability } from '@/hooks/useFrameStability'
import { VisionCameraFeed } from './VisionCameraFeed'
import { css } from '../../../styled-system/css'
import type { CalibrationGrid } from '@/types/vision'
/**
* Feature flag: Enable automatic abacus value detection from video feed.
*
* When enabled:
* - Runs CV-based bead detection on video frames
* - Shows detected value overlay
* - Calls setDockedValue and onValueDetected with detected values
*
* When disabled:
* - Only shows the video feed (no detection)
* - Hides the detection overlay
* - Does not interfere with student's manual input
*
* Set to true when ready to work on improving detection accuracy.
*/
const ENABLE_AUTO_DETECTION = false
// Only import detection modules when auto-detection is enabled
// This ensures the detection code is tree-shaken when disabled
let analyzeColumns: typeof import('@/lib/vision/beadDetector').analyzeColumns
let analysesToDigits: typeof import('@/lib/vision/beadDetector').analysesToDigits
let digitsToNumber: typeof import('@/lib/vision/beadDetector').digitsToNumber
let processVideoFrame: typeof import('@/lib/vision/frameProcessor').processVideoFrame
let processImageFrame: typeof import('@/lib/vision/frameProcessor').processImageFrame
if (ENABLE_AUTO_DETECTION) {
// eslint-disable-next-line @typescript-eslint/no-require-imports
const beadDetector = require('@/lib/vision/beadDetector')
// eslint-disable-next-line @typescript-eslint/no-require-imports
const frameProcessor = require('@/lib/vision/frameProcessor')
analyzeColumns = beadDetector.analyzeColumns
analysesToDigits = beadDetector.analysesToDigits
digitsToNumber = beadDetector.digitsToNumber
processVideoFrame = frameProcessor.processVideoFrame
processImageFrame = frameProcessor.processImageFrame
}
interface DockedVisionFeedProps {
/** Called when a stable value is detected */
onValueDetected?: (value: number) => void
/** Number of columns to detect */
columnCount?: number
}
/**
* Renders the processed camera feed in place of the docked abacus
*
* When vision is enabled in MyAbacusContext, this component:
* - For local camera: Opens the saved camera, applies calibration, runs detection
* - For remote camera: Receives frames from phone, runs detection
* - Shows the video feed with detection overlay
*/
export function DockedVisionFeed({ onValueDetected, columnCount = 5 }: DockedVisionFeedProps) {
const { visionConfig, setDockedValue, setVisionEnabled, setVisionCalibration, emitVisionFrame } =
useMyAbacus()
const videoRef = useRef<HTMLVideoElement>(null)
const remoteImageRef = useRef<HTMLImageElement>(null)
const rectifiedCanvasRef = useRef<HTMLCanvasElement | null>(null)
const animationFrameRef = useRef<number | null>(null)
const markerDetectionFrameRef = useRef<number | null>(null)
const lastInferenceTimeRef = useRef<number>(0)
const lastBroadcastTimeRef = useRef<number>(0)
const [videoStream, setVideoStream] = useState<MediaStream | null>(null)
const [error, setError] = useState<string | null>(null)
const [isLoading, setIsLoading] = useState(true)
const [detectedValue, setDetectedValue] = useState<number | null>(null)
const [confidence, setConfidence] = useState(0)
const [isArucoReady, setIsArucoReady] = useState(false)
const [markersFound, setMarkersFound] = useState(0)
// Stability tracking for detected values (hook must be called unconditionally)
const stability = useFrameStability()
// Determine camera source from explicit activeCameraSource field
const isLocalCamera = visionConfig.activeCameraSource === 'local'
const isRemoteCamera = visionConfig.activeCameraSource === 'phone'
// Load and initialize ArUco on mount (for local camera auto-calibration)
useEffect(() => {
if (!isLocalCamera) return
let cancelled = false
const initAruco = async () => {
try {
await loadAruco()
if (cancelled) return
const available = isArucoAvailable()
if (available) {
initArucoDetector()
setIsArucoReady(true)
}
} catch (err) {
console.error('[DockedVisionFeed] Failed to load ArUco:', err)
}
}
initAruco()
return () => {
cancelled = true
}
}, [isLocalCamera])
// Cleanup ArUco detector on unmount
useEffect(() => {
return () => {
cleanupArucoDetector()
}
}, [])
// Auto-calibration loop using ArUco markers (for local camera)
useEffect(() => {
if (!visionConfig.enabled || !isLocalCamera || !videoStream || !isArucoReady) {
if (markerDetectionFrameRef.current) {
cancelAnimationFrame(markerDetectionFrameRef.current)
markerDetectionFrameRef.current = null
}
return
}
const video = videoRef.current
if (!video) return
let running = true
const detectLoop = () => {
if (!running || !video || video.readyState < 2) {
if (running) {
markerDetectionFrameRef.current = requestAnimationFrame(detectLoop)
}
return
}
const result = detectMarkers(video)
setMarkersFound(result.markersFound)
// Auto-update calibration when all 4 markers found
if (result.allMarkersFound && result.quadCorners) {
const grid: CalibrationGrid = {
roi: {
x: Math.min(result.quadCorners.topLeft.x, result.quadCorners.bottomLeft.x),
y: Math.min(result.quadCorners.topLeft.y, result.quadCorners.topRight.y),
width:
Math.max(result.quadCorners.topRight.x, result.quadCorners.bottomRight.x) -
Math.min(result.quadCorners.topLeft.x, result.quadCorners.bottomLeft.x),
height:
Math.max(result.quadCorners.bottomLeft.y, result.quadCorners.bottomRight.y) -
Math.min(result.quadCorners.topLeft.y, result.quadCorners.topRight.y),
},
corners: result.quadCorners,
columnCount,
columnDividers: Array.from({ length: columnCount - 1 }, (_, i) => (i + 1) / columnCount),
rotation: 0,
}
// Update calibration in context
setVisionCalibration(grid)
}
markerDetectionFrameRef.current = requestAnimationFrame(detectLoop)
}
detectLoop()
return () => {
running = false
if (markerDetectionFrameRef.current) {
cancelAnimationFrame(markerDetectionFrameRef.current)
markerDetectionFrameRef.current = null
}
}
}, [
visionConfig.enabled,
isLocalCamera,
videoStream,
isArucoReady,
columnCount,
setVisionCalibration,
])
// Remote camera hook
const {
isPhoneConnected: remoteIsPhoneConnected,
latestFrame: remoteLatestFrame,
subscribe: remoteSubscribe,
unsubscribe: remoteUnsubscribe,
} = useRemoteCameraDesktop()
const INFERENCE_INTERVAL_MS = 100 // 10fps
// Start local camera when component mounts (only for local camera)
useEffect(() => {
if (!visionConfig.enabled || !isLocalCamera || !visionConfig.cameraDeviceId) {
return
}
let cancelled = false
setIsLoading(true)
setError(null)
const startCamera = async () => {
try {
const stream = await navigator.mediaDevices.getUserMedia({
video: {
deviceId: { exact: visionConfig.cameraDeviceId! },
width: { ideal: 1280 },
height: { ideal: 720 },
},
})
if (cancelled) {
stream.getTracks().forEach((track) => track.stop())
return
}
setVideoStream(stream)
setIsLoading(false)
} catch (err) {
if (cancelled) return
console.error('[DockedVisionFeed] Failed to start camera:', err)
setError('Failed to access camera')
setIsLoading(false)
}
}
startCamera()
return () => {
cancelled = true
}
}, [visionConfig.enabled, isLocalCamera, visionConfig.cameraDeviceId])
// Stop camera when stream changes or component unmounts
useEffect(() => {
return () => {
if (videoStream) {
videoStream.getTracks().forEach((track) => track.stop())
}
}
}, [videoStream])
// Attach stream to video element
useEffect(() => {
if (videoRef.current && videoStream) {
videoRef.current.srcObject = videoStream
}
}, [videoStream])
// Subscribe to remote camera session
useEffect(() => {
if (!visionConfig.enabled || !isRemoteCamera || !visionConfig.remoteCameraSessionId) {
return
}
setIsLoading(true)
remoteSubscribe(visionConfig.remoteCameraSessionId)
return () => {
remoteUnsubscribe()
}
}, [
visionConfig.enabled,
isRemoteCamera,
visionConfig.remoteCameraSessionId,
remoteSubscribe,
remoteUnsubscribe,
])
// Update loading state when remote camera connects
useEffect(() => {
if (isRemoteCamera && remoteIsPhoneConnected) {
setIsLoading(false)
}
}, [isRemoteCamera, remoteIsPhoneConnected])
// Process local camera frames for detection (only when enabled)
const processLocalFrame = useCallback(() => {
// Skip detection when feature is disabled
if (!ENABLE_AUTO_DETECTION) return
const now = performance.now()
if (now - lastInferenceTimeRef.current < INFERENCE_INTERVAL_MS) {
return
}
lastInferenceTimeRef.current = now
const video = videoRef.current
if (!video || video.readyState < 2) return
if (!visionConfig.calibration) return
// Process video frame into column strips
const columnImages = processVideoFrame(video, visionConfig.calibration)
if (columnImages.length === 0) return
// Use CV-based bead detection
const analyses = analyzeColumns(columnImages)
const { digits, minConfidence } = analysesToDigits(analyses)
// Convert to number
const value = digitsToNumber(digits)
// Push to stability buffer
stability.pushFrame(value, minConfidence)
}, [visionConfig.calibration, stability])
// Process remote camera frames for detection (only when enabled)
useEffect(() => {
// Skip detection when feature is disabled
if (!ENABLE_AUTO_DETECTION) return
if (!isRemoteCamera || !remoteIsPhoneConnected || !remoteLatestFrame) {
return
}
const now = performance.now()
if (now - lastInferenceTimeRef.current < INFERENCE_INTERVAL_MS) {
return
}
lastInferenceTimeRef.current = now
const image = remoteImageRef.current
if (!image || !image.complete || image.naturalWidth === 0) {
return
}
// Phone sends pre-cropped frames in auto mode, so no calibration needed
const columnImages = processImageFrame(image, null, columnCount)
if (columnImages.length === 0) return
// Use CV-based bead detection
const analyses = analyzeColumns(columnImages)
const { digits, minConfidence } = analysesToDigits(analyses)
// Convert to number
const value = digitsToNumber(digits)
// Push to stability buffer
stability.pushFrame(value, minConfidence)
}, [isRemoteCamera, remoteIsPhoneConnected, remoteLatestFrame, columnCount, stability])
// Local camera detection loop (only when enabled)
useEffect(() => {
// Skip detection loop when feature is disabled
if (!ENABLE_AUTO_DETECTION) return
if (!visionConfig.enabled || !isLocalCamera || !videoStream || !visionConfig.calibration) {
return
}
let running = true
const loop = () => {
if (!running) return
processLocalFrame()
animationFrameRef.current = requestAnimationFrame(loop)
}
loop()
return () => {
running = false
if (animationFrameRef.current) {
cancelAnimationFrame(animationFrameRef.current)
animationFrameRef.current = null
}
}
}, [
visionConfig.enabled,
isLocalCamera,
videoStream,
visionConfig.calibration,
processLocalFrame,
])
// Handle stable value changes (only when auto-detection is enabled)
useEffect(() => {
// Skip value updates when feature is disabled
if (!ENABLE_AUTO_DETECTION) return
if (stability.stableValue !== null && stability.stableValue !== detectedValue) {
setDetectedValue(stability.stableValue)
setConfidence(stability.currentConfidence)
setDockedValue(stability.stableValue)
onValueDetected?.(stability.stableValue)
}
}, [
stability.stableValue,
stability.currentConfidence,
detectedValue,
setDockedValue,
onValueDetected,
])
// Broadcast vision frames to observers (5fps to save bandwidth)
const BROADCAST_INTERVAL_MS = 200
useEffect(() => {
if (!visionConfig.enabled) return
let running = true
const broadcastLoop = () => {
if (!running) return
const now = performance.now()
if (now - lastBroadcastTimeRef.current >= BROADCAST_INTERVAL_MS) {
lastBroadcastTimeRef.current = now
// Capture from rectified canvas (local camera) or remote image
let imageData: string | null = null
if (isLocalCamera && rectifiedCanvasRef.current) {
const canvas = rectifiedCanvasRef.current
if (canvas.width > 0 && canvas.height > 0) {
// Convert canvas to JPEG (quality 0.7 for bandwidth)
imageData = canvas.toDataURL('image/jpeg', 0.7).replace('data:image/jpeg;base64,', '')
}
} else if (isRemoteCamera && remoteLatestFrame) {
// Remote camera already sends base64 JPEG
imageData = remoteLatestFrame.imageData
}
if (imageData) {
emitVisionFrame({
imageData,
detectedValue,
confidence,
})
}
}
requestAnimationFrame(broadcastLoop)
}
broadcastLoop()
return () => {
running = false
}
}, [
visionConfig.enabled,
isLocalCamera,
isRemoteCamera,
remoteLatestFrame,
detectedValue,
confidence,
emitVisionFrame,
])
const handleDisableVision = (e: React.MouseEvent) => {
e.stopPropagation()
setVisionEnabled(false)
if (videoStream) {
videoStream.getTracks().forEach((track) => track.stop())
}
}
if (error) {
return (
<div
data-component="docked-vision-feed"
data-status="error"
className={css({
display: 'flex',
flexDirection: 'column',
alignItems: 'center',
justifyContent: 'center',
gap: 2,
p: 4,
bg: 'red.900/30',
borderRadius: 'lg',
color: 'red.400',
textAlign: 'center',
})}
>
<span className={css({ fontSize: 'xl' })}></span>
<span className={css({ fontSize: 'sm' })}>{error}</span>
<button
type="button"
onClick={handleDisableVision}
className={css({
mt: 2,
px: 3,
py: 1,
bg: 'gray.700',
color: 'white',
borderRadius: 'md',
fontSize: 'xs',
border: 'none',
cursor: 'pointer',
})}
>
Disable Vision
</button>
</div>
)
}
if (isLoading) {
return (
<div
data-component="docked-vision-feed"
data-status="loading"
className={css({
display: 'flex',
flexDirection: 'column',
alignItems: 'center',
justifyContent: 'center',
gap: 2,
p: 4,
bg: 'gray.800/50',
borderRadius: 'lg',
color: 'gray.400',
})}
>
<span className={css({ fontSize: 'xl' })}>📷</span>
<span className={css({ fontSize: 'sm' })}>
{isRemoteCamera ? 'Connecting to phone...' : 'Starting camera...'}
</span>
</div>
)
}
return (
<div
data-component="docked-vision-feed"
data-status="active"
data-source={isRemoteCamera ? 'remote' : 'local'}
className={css({
position: 'relative',
display: 'flex',
flexDirection: 'column',
alignItems: 'center',
overflow: 'hidden',
borderRadius: 'lg',
bg: 'black',
width: '100%',
height: '100%',
})}
>
{/* Rectified video feed - local camera */}
{isLocalCamera && (
<VisionCameraFeed
videoStream={videoStream}
calibration={visionConfig.calibration}
showRectifiedView={true}
videoRef={(el) => {
videoRef.current = el
}}
rectifiedCanvasRef={(el) => {
rectifiedCanvasRef.current = el
}}
/>
)}
{/* Remote camera feed */}
{isRemoteCamera && remoteLatestFrame && (
<img
ref={remoteImageRef}
src={`data:image/jpeg;base64,${remoteLatestFrame.imageData}`}
alt="Phone camera view"
className={css({
width: '100%',
height: 'auto',
objectFit: 'contain',
})}
/>
)}
{/* Waiting for remote frames */}
{isRemoteCamera && !remoteLatestFrame && remoteIsPhoneConnected && (
<div
className={css({
width: '100%',
aspectRatio: '2/1',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
color: 'gray.400',
fontSize: 'sm',
})}
>
Waiting for frames...
</div>
)}
{/* Detection overlay - only shown when auto-detection is enabled */}
{ENABLE_AUTO_DETECTION && (
<div
data-element="detection-overlay"
className={css({
position: 'absolute',
bottom: 0,
left: 0,
right: 0,
display: 'flex',
justifyContent: 'space-between',
alignItems: 'center',
p: 2,
bg: 'rgba(0, 0, 0, 0.7)',
backdropFilter: 'blur(4px)',
})}
>
{/* Detected value */}
<div className={css({ display: 'flex', alignItems: 'center', gap: 2 })}>
<span
className={css({
fontSize: 'lg',
fontWeight: 'bold',
color: 'white',
fontFamily: 'mono',
})}
>
{detectedValue !== null ? detectedValue : '---'}
</span>
{detectedValue !== null && (
<span className={css({ fontSize: 'xs', color: 'gray.400' })}>
{Math.round(confidence * 100)}%
</span>
)}
</div>
{/* Stability indicator */}
<div className={css({ display: 'flex', alignItems: 'center', gap: 1 })}>
{stability.consecutiveFrames > 0 && (
<div className={css({ display: 'flex', gap: 0.5 })}>
{Array.from({ length: 3 }).map((_, i) => (
<div
key={i}
className={css({
w: '6px',
h: '6px',
borderRadius: 'full',
bg: i < stability.consecutiveFrames ? 'green.500' : 'gray.600',
})}
/>
))}
</div>
)}
</div>
</div>
)}
{/* Disable button */}
<button
type="button"
data-action="disable-vision"
onClick={handleDisableVision}
title="Disable vision mode"
className={css({
position: 'absolute',
top: '4px',
right: '4px',
w: '24px',
h: '24px',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
bg: 'rgba(0, 0, 0, 0.5)',
backdropFilter: 'blur(4px)',
border: '1px solid rgba(255, 255, 255, 0.3)',
borderRadius: 'md',
color: 'white',
fontSize: 'xs',
cursor: 'pointer',
zIndex: 10,
opacity: 0.7,
_hover: {
bg: 'rgba(239, 68, 68, 0.8)',
opacity: 1,
},
})}
>
</button>
</div>
)
}

View File

@@ -0,0 +1,128 @@
'use client'
import type { ObservedVisionFrame } from '@/hooks/useSessionObserver'
import { css } from '../../../styled-system/css'
interface ObserverVisionFeedProps {
/** The latest vision frame from the observed student */
frame: ObservedVisionFrame
}
/**
* Displays the vision feed received from an observed student's session.
*
* Used in the SessionObserver modal when the student has abacus vision enabled.
* Shows the processed camera feed with detection status overlay.
*/
export function ObserverVisionFeed({ frame }: ObserverVisionFeedProps) {
// Calculate age of frame for staleness indicator
const frameAge = Date.now() - frame.receivedAt
const isStale = frameAge > 1000 // More than 1 second old
return (
<div
data-component="observer-vision-feed"
data-stale={isStale}
className={css({
position: 'relative',
display: 'flex',
flexDirection: 'column',
borderRadius: 'lg',
overflow: 'hidden',
bg: 'black',
})}
>
{/* Video frame */}
<img
src={`data:image/jpeg;base64,${frame.imageData}`}
alt="Student's abacus vision feed"
className={css({
width: '100%',
height: 'auto',
display: 'block',
opacity: isStale ? 0.5 : 1,
transition: 'opacity 0.3s',
})}
/>
{/* Detection overlay */}
<div
data-element="detection-overlay"
className={css({
position: 'absolute',
bottom: 0,
left: 0,
right: 0,
display: 'flex',
justifyContent: 'space-between',
alignItems: 'center',
p: 2,
bg: 'rgba(0, 0, 0, 0.7)',
backdropFilter: 'blur(4px)',
})}
>
{/* Detected value */}
<div className={css({ display: 'flex', alignItems: 'center', gap: 2 })}>
<span
className={css({
fontSize: 'lg',
fontWeight: 'bold',
color: 'white',
fontFamily: 'mono',
})}
>
{frame.detectedValue !== null ? frame.detectedValue : '---'}
</span>
{frame.detectedValue !== null && (
<span className={css({ fontSize: 'xs', color: 'gray.400' })}>
{Math.round(frame.confidence * 100)}%
</span>
)}
</div>
{/* Live indicator */}
<div className={css({ display: 'flex', alignItems: 'center', gap: 1 })}>
<div
className={css({
w: '8px',
h: '8px',
borderRadius: 'full',
bg: isStale ? 'gray.500' : 'green.500',
animation: isStale ? 'none' : 'pulse 2s infinite',
})}
/>
<span
className={css({
fontSize: 'xs',
color: isStale ? 'gray.500' : 'green.400',
})}
>
{isStale ? 'Stale' : 'Live'}
</span>
</div>
</div>
{/* Vision mode badge */}
<div
data-element="vision-badge"
className={css({
position: 'absolute',
top: '4px',
left: '4px',
display: 'flex',
alignItems: 'center',
gap: 1,
px: 2,
py: 1,
bg: 'rgba(0, 0, 0, 0.6)',
borderRadius: 'md',
fontSize: 'xs',
color: 'cyan.400',
})}
>
<span>📷</span>
<span>Vision</span>
</div>
</div>
)
}

View File

@@ -1,6 +1,6 @@
'use client'
import { useCallback, useEffect, useState } from 'react'
import { useEffect, useRef, useState } from 'react'
import { AbacusQRCode } from '@/components/common/AbacusQRCode'
import { useRemoteCameraSession } from '@/hooks/useRemoteCameraSession'
import { css } from '../../../styled-system/css'
@@ -10,6 +10,8 @@ export interface RemoteCameraQRCodeProps {
onSessionCreated?: (sessionId: string) => void
/** Size of the QR code in pixels */
size?: number
/** Existing session ID to reuse (for reconnection scenarios) */
existingSessionId?: string | null
}
/**
@@ -17,20 +19,42 @@ export interface RemoteCameraQRCodeProps {
*
* Automatically creates a remote camera session and shows a QR code
* that phones can scan to connect as a remote camera source.
*
* If an existing session ID is provided, it will reuse that session
* instead of creating a new one. This allows the phone to reconnect
* after a page reload.
*/
export function RemoteCameraQRCode({ onSessionCreated, size = 200 }: RemoteCameraQRCodeProps) {
const { session, isCreating, error, createSession, getPhoneUrl } = useRemoteCameraSession()
export function RemoteCameraQRCode({
onSessionCreated,
size = 200,
existingSessionId,
}: RemoteCameraQRCodeProps) {
const { session, isCreating, error, createSession, setExistingSession, getPhoneUrl } =
useRemoteCameraSession()
// Create session on mount
// Ref to track if we've already initiated session creation
// This prevents React 18 Strict Mode from creating duplicate sessions
const creationInitiatedRef = useRef(false)
// If we have an existing session ID, use it instead of creating a new one
useEffect(() => {
if (!session && !isCreating) {
if (existingSessionId && !session) {
setExistingSession(existingSessionId)
}
}, [existingSessionId, session, setExistingSession])
// Create session on mount only if no existing session
// Use ref to prevent duplicate creation in React 18 Strict Mode
useEffect(() => {
if (!session && !isCreating && !existingSessionId && !creationInitiatedRef.current) {
creationInitiatedRef.current = true
createSession().then((newSession) => {
if (newSession && onSessionCreated) {
onSessionCreated(newSession.sessionId)
}
})
}
}, [session, isCreating, createSession, onSessionCreated])
}, [session, isCreating, existingSessionId, createSession, onSessionCreated])
const phoneUrl = getPhoneUrl()
@@ -149,23 +173,75 @@ export function RemoteCameraQRCode({ onSessionCreated, size = 200 }: RemoteCamer
<p className={css({ fontSize: 'xs', color: 'gray.400' })}>Session expires in 10 minutes</p>
</div>
{/* URL for manual entry */}
<div
className={css({
fontSize: 'xs',
color: 'gray.500',
bg: 'gray.100',
px: 3,
py: 2,
borderRadius: 'md',
fontFamily: 'mono',
wordBreak: 'break-all',
maxWidth: '280px',
textAlign: 'center',
})}
>
{phoneUrl}
</div>
{/* URL for manual entry with copy button */}
<UrlWithCopyButton url={phoneUrl} />
</div>
)
}
/**
* URL display with copy button
*/
function UrlWithCopyButton({ url }: { url: string }) {
const [copied, setCopied] = useState(false)
const handleCopy = async () => {
try {
await navigator.clipboard.writeText(url)
setCopied(true)
setTimeout(() => setCopied(false), 2000)
} catch (err) {
console.error('Failed to copy URL:', err)
}
}
return (
<div
data-element="url-copy-container"
className={css({
display: 'flex',
alignItems: 'center',
gap: 2,
bg: 'gray.100',
px: 3,
py: 2,
borderRadius: 'md',
maxWidth: '280px',
})}
>
<span
className={css({
fontSize: 'xs',
color: 'gray.500',
fontFamily: 'mono',
wordBreak: 'break-all',
flex: 1,
userSelect: 'text',
})}
>
{url}
</span>
<button
type="button"
onClick={handleCopy}
data-action="copy-url"
className={css({
flexShrink: 0,
px: 2,
py: 1,
bg: copied ? 'green.600' : 'gray.600',
color: 'white',
border: 'none',
borderRadius: 'md',
fontSize: 'xs',
cursor: 'pointer',
transition: 'background-color 0.2s',
_hover: { bg: copied ? 'green.700' : 'gray.700' },
})}
title="Copy URL to clipboard"
>
{copied ? '✓' : '📋'}
</button>
</div>
)
}

View File

@@ -58,8 +58,14 @@ export function RemoteCameraReceiver({
const [calibration, setCalibration] = useState<CalibrationGrid | null>(null)
const containerRef = useRef<HTMLDivElement>(null)
const imageRef = useRef<HTMLImageElement>(null)
const [containerDimensions, setContainerDimensions] = useState({ width: 0, height: 0 })
const [imageDimensions, setImageDimensions] = useState({ width: 0, height: 0 })
const [containerDimensions, setContainerDimensions] = useState({
width: 0,
height: 0,
})
const [imageDimensions, setImageDimensions] = useState({
width: 0,
height: 0,
})
// Subscribe when sessionId changes
useEffect(() => {
@@ -100,7 +106,10 @@ export function RemoteCameraReceiver({
// Track image dimensions when it loads
const handleImageLoad = useCallback((e: React.SyntheticEvent<HTMLImageElement>) => {
const img = e.currentTarget
setImageDimensions({ width: img.naturalWidth, height: img.naturalHeight })
setImageDimensions({
width: img.naturalWidth,
height: img.naturalHeight,
})
}, [])
// Create image src from base64 data

View File

@@ -19,6 +19,8 @@ export interface VisionCameraFeedProps {
showRectifiedView?: boolean
/** Video element ref callback for external access */
videoRef?: (el: HTMLVideoElement | null) => void
/** Rectified canvas ref callback for external access (only when showRectifiedView=true) */
rectifiedCanvasRef?: (el: HTMLCanvasElement | null) => void
/** Called when video metadata is loaded (provides dimensions) */
onVideoReady?: (width: number, height: number) => void
/** Children rendered over the video (e.g., CalibrationOverlay) */
@@ -55,6 +57,7 @@ export function VisionCameraFeed({
showCalibrationGrid = false,
showRectifiedView = false,
videoRef: externalVideoRef,
rectifiedCanvasRef: externalCanvasRef,
onVideoReady,
children,
}: VisionCameraFeedProps): ReactNode {
@@ -82,6 +85,13 @@ export function VisionCameraFeed({
}
}, [externalVideoRef])
// Set canvas ref for external access (when rectified view is active)
useEffect(() => {
if (externalCanvasRef && showRectifiedView) {
externalCanvasRef(rectifiedCanvasRef.current)
}
}, [externalCanvasRef, showRectifiedView])
// Attach stream to video element
useEffect(() => {
const video = internalVideoRef.current

View File

@@ -0,0 +1,122 @@
'use client'
import { useMyAbacus } from '@/contexts/MyAbacusContext'
import { css } from '../../../styled-system/css'
interface VisionIndicatorProps {
/** Size variant */
size?: 'small' | 'medium'
/** Position for absolute placement */
position?: 'top-left' | 'bottom-right'
}
/**
* Camera icon indicator for abacus vision mode
*
* Shows:
* - 🔴 Red dot = not configured (no camera or no calibration)
* - 🟢 Green dot = configured and enabled
* - ⚪ Gray = configured but disabled
*
* Click behavior:
* - If not configured: opens setup modal
* - If configured: toggles vision on/off
*/
export function VisionIndicator({
size = 'medium',
position = 'bottom-right',
}: VisionIndicatorProps) {
const { visionConfig, isVisionSetupComplete, openVisionSetup } = useMyAbacus()
const handleClick = (e: React.MouseEvent) => {
e.stopPropagation()
// Always open setup modal on click for now
// This gives users easy access to vision settings
openVisionSetup()
}
const handleContextMenu = (e: React.MouseEvent) => {
e.preventDefault()
e.stopPropagation()
// Right-click always opens setup
openVisionSetup()
}
// Determine status indicator color
const statusColor = !isVisionSetupComplete
? 'red.500' // Not configured
: visionConfig.enabled
? 'green.500' // Enabled
: 'gray.400' // Configured but disabled
const statusLabel = !isVisionSetupComplete
? 'Vision not configured'
: visionConfig.enabled
? 'Vision enabled'
: 'Vision disabled'
const sizeStyles =
size === 'small'
? { w: '20px', h: '20px', fontSize: '10px' }
: { w: '28px', h: '28px', fontSize: '14px' }
const positionStyles =
position === 'top-left'
? { top: 0, left: 0, margin: '4px' }
: { bottom: 0, right: 0, margin: '4px' }
return (
<button
type="button"
data-vision-status={
!isVisionSetupComplete ? 'not-configured' : visionConfig.enabled ? 'enabled' : 'disabled'
}
onClick={handleClick}
onContextMenu={handleContextMenu}
title={`${statusLabel} (right-click for settings)`}
style={{
position: 'absolute',
...positionStyles,
}}
className={css({
...sizeStyles,
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
bg: 'rgba(0, 0, 0, 0.5)',
backdropFilter: 'blur(4px)',
border: '1px solid rgba(255, 255, 255, 0.3)',
borderRadius: 'md',
color: 'white',
cursor: 'pointer',
transition: 'all 0.2s',
zIndex: 10,
opacity: 0.8,
_hover: {
bg: 'rgba(0, 0, 0, 0.7)',
opacity: 1,
transform: 'scale(1.1)',
},
})}
>
{/* Camera icon */}
<span style={{ position: 'relative' }}>
📷{/* Status dot */}
<span
data-element="vision-status-dot"
className={css({
position: 'absolute',
top: '-2px',
right: '-4px',
w: '8px',
h: '8px',
borderRadius: 'full',
bg: statusColor,
border: '1px solid white',
boxShadow: '0 1px 2px rgba(0,0,0,0.3)',
})}
/>
</span>
</button>
)
}

View File

@@ -0,0 +1,99 @@
'use client'
import { useMyAbacus } from '@/contexts/MyAbacusContext'
import { css } from '../../../styled-system/css'
import { AbacusVisionBridge } from './AbacusVisionBridge'
/**
* Modal for configuring abacus vision settings
*
* Renders AbacusVisionBridge directly in a draggable modal.
* The bridge component handles all camera/calibration configuration.
*/
export function VisionSetupModal() {
const {
isVisionSetupOpen,
closeVisionSetup,
visionConfig,
isVisionSetupComplete,
setVisionEnabled,
setVisionCamera,
setVisionCalibration,
setVisionRemoteSession,
setVisionCameraSource,
dock,
} = useMyAbacus()
const handleClearSettings = () => {
setVisionCamera(null)
setVisionCalibration(null)
setVisionRemoteSession(null)
setVisionCameraSource(null)
setVisionEnabled(false)
}
const handleToggleVision = () => {
setVisionEnabled(!visionConfig.enabled)
}
if (!isVisionSetupOpen) return null
return (
<div
data-component="vision-setup-modal"
className={css({
position: 'fixed',
inset: 0,
bg: 'rgba(0, 0, 0, 0.7)',
backdropFilter: 'blur(4px)',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
zIndex: 10000,
})}
onClick={closeVisionSetup}
onKeyDown={(e) => {
if (e.key === 'Escape') {
closeVisionSetup()
}
}}
>
{/* AbacusVisionBridge is a motion.div with drag - stopPropagation prevents backdrop close */}
<div onClick={(e) => e.stopPropagation()}>
<AbacusVisionBridge
columnCount={dock?.columns ?? 5}
onValueDetected={() => {
// Value detected - configuration is working
}}
onClose={closeVisionSetup}
onConfigurationChange={(config) => {
// Save configuration to context as it changes
if (config.cameraDeviceId !== undefined) {
setVisionCamera(config.cameraDeviceId)
}
if (config.calibration !== undefined) {
setVisionCalibration(config.calibration)
}
if (config.remoteCameraSessionId !== undefined) {
setVisionRemoteSession(config.remoteCameraSessionId)
}
if (config.activeCameraSource !== undefined) {
setVisionCameraSource(config.activeCameraSource)
}
}}
// Use saved activeCameraSource if available, otherwise infer from configs
initialCameraSource={
visionConfig.activeCameraSource ??
(visionConfig.remoteCameraSessionId && !visionConfig.cameraDeviceId ? 'phone' : 'local')
}
// Show enable/disable and clear buttons
showVisionControls={true}
isVisionEnabled={visionConfig.enabled}
isVisionSetupComplete={isVisionSetupComplete}
onToggleVision={handleToggleVision}
onClearSettings={handleClearSettings}
/>
</div>
</div>
)
}

View File

@@ -0,0 +1,191 @@
/**
* Unit tests for ObserverVisionFeed component
*
* Note: Canvas.Image mock is provided in src/test/setup.ts to prevent
* jsdom errors with data URI images. Actual image rendering is verified
* through integration/e2e tests.
*/
import { render, screen } from '@testing-library/react'
import { afterEach, beforeEach, describe, expect, it, vi } from 'vitest'
import type { ObservedVisionFrame } from '@/hooks/useSessionObserver'
import { ObserverVisionFeed } from '../ObserverVisionFeed'
describe('ObserverVisionFeed', () => {
const createMockFrame = (overrides?: Partial<ObservedVisionFrame>): ObservedVisionFrame => ({
imageData: 'base64ImageData==',
detectedValue: 123,
confidence: 0.95,
receivedAt: Date.now(),
...overrides,
})
beforeEach(() => {
vi.useFakeTimers()
})
afterEach(() => {
vi.useRealTimers()
})
describe('rendering', () => {
it('renders the vision feed container', () => {
const frame = createMockFrame()
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByRole('img')).toBeInTheDocument()
})
it('displays the image with correct src', () => {
const frame = createMockFrame({ imageData: 'testImageData123' })
render(<ObserverVisionFeed frame={frame} />)
const img = screen.getByRole('img') as HTMLImageElement
// Check the src property (not attribute) because our test setup
// intercepts ')
})
it('has appropriate alt text for accessibility', () => {
const frame = createMockFrame()
render(<ObserverVisionFeed frame={frame} />)
const img = screen.getByRole('img')
expect(img).toHaveAttribute('alt', "Student's abacus vision feed")
})
})
describe('detected value display', () => {
it('displays the detected value', () => {
const frame = createMockFrame({ detectedValue: 456, confidence: 0.87 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('456')).toBeInTheDocument()
})
it('displays confidence percentage', () => {
const frame = createMockFrame({ detectedValue: 123, confidence: 0.87 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('87%')).toBeInTheDocument()
})
it('displays dashes when detectedValue is null', () => {
const frame = createMockFrame({ detectedValue: null, confidence: 0 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('---')).toBeInTheDocument()
})
it('hides confidence when value is null', () => {
const frame = createMockFrame({ detectedValue: null, confidence: 0.95 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.queryByText('95%')).not.toBeInTheDocument()
})
it('handles zero as a valid detected value', () => {
const frame = createMockFrame({ detectedValue: 0, confidence: 0.99 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('0')).toBeInTheDocument()
expect(screen.getByText('99%')).toBeInTheDocument()
})
})
describe('live/stale indicator', () => {
it('shows Live status for fresh frames (less than 1 second old)', () => {
const now = Date.now()
vi.setSystemTime(now)
const frame = createMockFrame({ receivedAt: now - 500 }) // 500ms ago
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('Live')).toBeInTheDocument()
})
it('shows Stale status for old frames (more than 1 second old)', () => {
const now = Date.now()
vi.setSystemTime(now)
const frame = createMockFrame({ receivedAt: now - 1500 }) // 1.5 seconds ago
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('Stale')).toBeInTheDocument()
})
it('sets stale data attribute when frame is old', () => {
const now = Date.now()
vi.setSystemTime(now)
const frame = createMockFrame({ receivedAt: now - 2000 }) // 2 seconds ago
const { container } = render(<ObserverVisionFeed frame={frame} />)
const component = container.querySelector('[data-component="observer-vision-feed"]')
expect(component).toHaveAttribute('data-stale', 'true')
})
it('sets stale data attribute to false for fresh frames', () => {
const now = Date.now()
vi.setSystemTime(now)
const frame = createMockFrame({ receivedAt: now - 100 }) // 100ms ago
const { container } = render(<ObserverVisionFeed frame={frame} />)
const component = container.querySelector('[data-component="observer-vision-feed"]')
expect(component).toHaveAttribute('data-stale', 'false')
})
it('reduces image opacity for stale frames', () => {
const now = Date.now()
vi.setSystemTime(now)
const frame = createMockFrame({ receivedAt: now - 2000 })
render(<ObserverVisionFeed frame={frame} />)
const img = screen.getByRole('img')
// The opacity should be reduced for stale frames
expect(img.className).toBeDefined()
})
})
describe('vision badge', () => {
it('displays the vision badge', () => {
const frame = createMockFrame()
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('📷')).toBeInTheDocument()
expect(screen.getByText('Vision')).toBeInTheDocument()
})
})
describe('edge cases', () => {
it('handles very large detected values', () => {
const frame = createMockFrame({ detectedValue: 99999, confidence: 1.0 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('99999')).toBeInTheDocument()
expect(screen.getByText('100%')).toBeInTheDocument()
})
it('rounds confidence to nearest integer', () => {
const frame = createMockFrame({ detectedValue: 123, confidence: 0.876 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('88%')).toBeInTheDocument()
})
it('handles confidence edge case of exactly 1', () => {
const frame = createMockFrame({ detectedValue: 123, confidence: 1.0 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('100%')).toBeInTheDocument()
})
it('handles confidence edge case of exactly 0', () => {
const frame = createMockFrame({ detectedValue: 123, confidence: 0 })
render(<ObserverVisionFeed frame={frame} />)
expect(screen.getByText('0%')).toBeInTheDocument()
})
})
})

View File

@@ -0,0 +1,173 @@
/**
* Unit tests for VisionIndicator component
*/
import { fireEvent, render, screen } from '@testing-library/react'
import { beforeEach, describe, expect, it, vi } from 'vitest'
import { VisionIndicator } from '../VisionIndicator'
// Mock the MyAbacusContext
const mockOpenVisionSetup = vi.fn()
const mockVisionConfig = {
enabled: false,
cameraDeviceId: null,
calibration: null,
remoteCameraSessionId: null,
}
vi.mock('@/contexts/MyAbacusContext', () => ({
useMyAbacus: () => ({
visionConfig: mockVisionConfig,
isVisionSetupComplete:
mockVisionConfig.cameraDeviceId !== null && mockVisionConfig.calibration !== null,
openVisionSetup: mockOpenVisionSetup,
}),
}))
describe('VisionIndicator', () => {
beforeEach(() => {
vi.clearAllMocks()
// Reset to default state
mockVisionConfig.enabled = false
mockVisionConfig.cameraDeviceId = null
mockVisionConfig.calibration = null
mockVisionConfig.remoteCameraSessionId = null
})
describe('rendering', () => {
it('renders the camera icon', () => {
render(<VisionIndicator />)
expect(screen.getByText('📷')).toBeInTheDocument()
})
it('renders with medium size by default', () => {
render(<VisionIndicator />)
const button = screen.getByRole('button')
// Medium size button should exist with the vision-status attribute
expect(button).toHaveAttribute('data-vision-status')
})
it('renders with small size when specified', () => {
render(<VisionIndicator size="small" />)
expect(screen.getByRole('button')).toBeInTheDocument()
})
})
describe('status indicator', () => {
it('shows not-configured status when camera is not set', () => {
mockVisionConfig.cameraDeviceId = null
mockVisionConfig.calibration = null
render(<VisionIndicator />)
const button = screen.getByRole('button')
expect(button).toHaveAttribute('data-vision-status', 'not-configured')
})
it('shows disabled status when configured but not enabled', () => {
mockVisionConfig.cameraDeviceId = 'camera-123'
mockVisionConfig.calibration = {
roi: { x: 0, y: 0, width: 100, height: 100 },
columnCount: 5,
columnDividers: [],
rotation: 0,
}
mockVisionConfig.enabled = false
render(<VisionIndicator />)
const button = screen.getByRole('button')
expect(button).toHaveAttribute('data-vision-status', 'disabled')
})
it('shows enabled status when configured and enabled', () => {
mockVisionConfig.cameraDeviceId = 'camera-123'
mockVisionConfig.calibration = {
roi: { x: 0, y: 0, width: 100, height: 100 },
columnCount: 5,
columnDividers: [],
rotation: 0,
}
mockVisionConfig.enabled = true
render(<VisionIndicator />)
const button = screen.getByRole('button')
expect(button).toHaveAttribute('data-vision-status', 'enabled')
})
})
describe('click behavior', () => {
it('opens setup modal on click', () => {
render(<VisionIndicator />)
const button = screen.getByRole('button')
fireEvent.click(button)
expect(mockOpenVisionSetup).toHaveBeenCalledTimes(1)
})
it('opens setup modal on right-click', () => {
render(<VisionIndicator />)
const button = screen.getByRole('button')
fireEvent.contextMenu(button)
expect(mockOpenVisionSetup).toHaveBeenCalledTimes(1)
})
it('stops event propagation on click', () => {
const parentClickHandler = vi.fn()
render(
<div onClick={parentClickHandler}>
<VisionIndicator />
</div>
)
const button = screen.getByRole('button')
fireEvent.click(button)
expect(parentClickHandler).not.toHaveBeenCalled()
})
})
describe('accessibility', () => {
it('has appropriate title based on status', () => {
mockVisionConfig.cameraDeviceId = null
render(<VisionIndicator />)
const button = screen.getByRole('button')
expect(button).toHaveAttribute('title', expect.stringContaining('not configured'))
})
it('updates title when vision is enabled', () => {
mockVisionConfig.cameraDeviceId = 'camera-123'
mockVisionConfig.calibration = {
roi: { x: 0, y: 0, width: 100, height: 100 },
columnCount: 5,
columnDividers: [],
rotation: 0,
}
mockVisionConfig.enabled = true
render(<VisionIndicator />)
const button = screen.getByRole('button')
expect(button).toHaveAttribute('title', expect.stringContaining('enabled'))
})
})
describe('positioning', () => {
it('uses bottom-right position by default', () => {
render(<VisionIndicator />)
const button = screen.getByRole('button')
expect(button.style.position).toBe('absolute')
})
it('accepts top-left position', () => {
render(<VisionIndicator position="top-left" />)
const button = screen.getByRole('button')
expect(button.style.position).toBe('absolute')
})
})
})

View File

@@ -6,9 +6,76 @@ import {
type MutableRefObject,
useCallback,
useContext,
useEffect,
useRef,
useState,
} from 'react'
import type { CalibrationGrid } from '@/types/vision'
/**
* Camera source type for vision
*/
export type CameraSourceType = 'local' | 'phone'
/**
* Configuration for abacus vision (camera-based input)
*/
export interface VisionConfig {
/** Whether vision mode is enabled */
enabled: boolean
/** Selected camera device ID */
cameraDeviceId: string | null
/** Saved calibration grid for cropping */
calibration: CalibrationGrid | null
/** Remote phone camera session ID (for phone-as-camera mode) */
remoteCameraSessionId: string | null
/** Currently active camera source - tracks which camera is in use */
activeCameraSource: CameraSourceType | null
}
const DEFAULT_VISION_CONFIG: VisionConfig = {
enabled: false,
cameraDeviceId: null,
calibration: null,
remoteCameraSessionId: null,
activeCameraSource: null,
}
const VISION_CONFIG_STORAGE_KEY = 'abacus-vision-config'
/**
* Load vision config from localStorage
*/
function loadVisionConfig(): VisionConfig {
if (typeof window === 'undefined') return DEFAULT_VISION_CONFIG
try {
const stored = localStorage.getItem(VISION_CONFIG_STORAGE_KEY)
if (stored) {
const parsed = JSON.parse(stored)
return {
...DEFAULT_VISION_CONFIG,
...parsed,
// Always start with vision disabled - user must re-enable
enabled: false,
}
}
} catch (e) {
console.error('[MyAbacusContext] Failed to load vision config:', e)
}
return DEFAULT_VISION_CONFIG
}
/**
* Save vision config to localStorage
*/
function saveVisionConfig(config: VisionConfig): void {
if (typeof window === 'undefined') return
try {
localStorage.setItem(VISION_CONFIG_STORAGE_KEY, JSON.stringify(config))
} catch (e) {
console.error('[MyAbacusContext] Failed to save vision config:', e)
}
}
/**
* Configuration for a docked abacus
@@ -54,6 +121,23 @@ export interface DockAnimationState {
toScale: number
}
/**
* Vision frame data for broadcasting
*/
export interface VisionFrameData {
/** Base64-encoded JPEG image data */
imageData: string
/** Detected abacus value (null if not yet detected) */
detectedValue: number | null
/** Detection confidence (0-1) */
confidence: number
}
/**
* Callback type for vision frame broadcasting
*/
export type VisionFrameCallback = (frame: VisionFrameData) => void
interface MyAbacusContextValue {
isOpen: boolean
open: () => void
@@ -107,6 +191,31 @@ interface MyAbacusContextValue {
setDockedValue: (value: number) => void
/** Current abacus value (for reading) */
abacusValue: number
// Vision-related state
/** Current vision configuration */
visionConfig: VisionConfig
/** Whether vision setup is complete (has camera and calibration) */
isVisionSetupComplete: boolean
/** Set whether vision is enabled */
setVisionEnabled: (enabled: boolean) => void
/** Set the selected camera device ID */
setVisionCamera: (deviceId: string | null) => void
/** Set the calibration grid */
setVisionCalibration: (calibration: CalibrationGrid | null) => void
/** Set the remote camera session ID */
setVisionRemoteSession: (sessionId: string | null) => void
/** Set the active camera source */
setVisionCameraSource: (source: CameraSourceType | null) => void
/** Whether the vision setup modal is open */
isVisionSetupOpen: boolean
/** Open the vision setup modal */
openVisionSetup: () => void
/** Close the vision setup modal */
closeVisionSetup: () => void
/** Set a callback for receiving vision frames (for broadcasting to observers) */
setVisionFrameCallback: (callback: VisionFrameCallback | null) => void
/** Emit a vision frame (called by DockedVisionFeed) */
emitVisionFrame: (frame: VisionFrameData) => void
}
const MyAbacusContext = createContext<MyAbacusContextValue | undefined>(undefined)
@@ -124,6 +233,16 @@ export function MyAbacusProvider({ children }: { children: React.ReactNode }) {
const [pendingDockRequest, setPendingDockRequest] = useState(false)
const [abacusValue, setAbacusValue] = useState(0)
// Vision state
const [visionConfig, setVisionConfig] = useState<VisionConfig>(DEFAULT_VISION_CONFIG)
const [isVisionSetupOpen, setIsVisionSetupOpen] = useState(false)
// Load vision config from localStorage on mount
useEffect(() => {
const loaded = loadVisionConfig()
setVisionConfig(loaded)
}, [])
const open = useCallback(() => setIsOpen(true), [])
const close = useCallback(() => setIsOpen(false), [])
const toggle = useCallback(() => setIsOpen((prev) => !prev), [])
@@ -200,6 +319,73 @@ export function MyAbacusProvider({ children }: { children: React.ReactNode }) {
setAbacusValue(value)
}, [])
// Vision callbacks
// Setup is complete if an active camera source is set and configured:
// - Local camera: has camera device (calibration is optional - auto-crop works without it)
// - Remote camera: has remote session ID (phone handles calibration)
const isVisionSetupComplete =
visionConfig.activeCameraSource !== null &&
((visionConfig.activeCameraSource === 'local' && visionConfig.cameraDeviceId !== null) ||
(visionConfig.activeCameraSource === 'phone' && visionConfig.remoteCameraSessionId !== null))
const setVisionEnabled = useCallback((enabled: boolean) => {
setVisionConfig((prev) => {
const updated = { ...prev, enabled }
saveVisionConfig(updated)
return updated
})
}, [])
const setVisionCamera = useCallback((deviceId: string | null) => {
setVisionConfig((prev) => {
const updated = { ...prev, cameraDeviceId: deviceId }
saveVisionConfig(updated)
return updated
})
}, [])
const setVisionCalibration = useCallback((calibration: CalibrationGrid | null) => {
setVisionConfig((prev) => {
const updated = { ...prev, calibration }
saveVisionConfig(updated)
return updated
})
}, [])
const setVisionRemoteSession = useCallback((sessionId: string | null) => {
setVisionConfig((prev) => {
const updated = { ...prev, remoteCameraSessionId: sessionId }
saveVisionConfig(updated)
return updated
})
}, [])
const setVisionCameraSource = useCallback((source: CameraSourceType | null) => {
setVisionConfig((prev) => {
const updated = { ...prev, activeCameraSource: source }
saveVisionConfig(updated)
return updated
})
}, [])
const openVisionSetup = useCallback(() => {
setIsVisionSetupOpen(true)
}, [])
const closeVisionSetup = useCallback(() => {
setIsVisionSetupOpen(false)
}, [])
// Vision frame broadcasting
const visionFrameCallbackRef = useRef<VisionFrameCallback | null>(null)
const setVisionFrameCallback = useCallback((callback: VisionFrameCallback | null) => {
visionFrameCallbackRef.current = callback
}, [])
const emitVisionFrame = useCallback((frame: VisionFrameData) => {
visionFrameCallbackRef.current?.(frame)
}, [])
return (
<MyAbacusContext.Provider
value={{
@@ -233,6 +419,19 @@ export function MyAbacusProvider({ children }: { children: React.ReactNode }) {
clearDockRequest,
setDockedValue,
abacusValue,
// Vision
visionConfig,
isVisionSetupComplete,
setVisionEnabled,
setVisionCamera,
setVisionCalibration,
setVisionRemoteSession,
setVisionCameraSource,
isVisionSetupOpen,
openVisionSetup,
closeVisionSetup,
setVisionFrameCallback,
emitVisionFrame,
}}
>
{children}

View File

@@ -0,0 +1,432 @@
/**
* Unit tests for MyAbacusContext vision functionality
*/
import { act, renderHook } from '@testing-library/react'
import type { ReactNode } from 'react'
import { beforeEach, describe, expect, it, vi } from 'vitest'
import { MyAbacusProvider, useMyAbacus, type VisionFrameData } from '../MyAbacusContext'
// Mock localStorage
const localStorageMock = (() => {
let store: Record<string, string> = {}
return {
getItem: vi.fn((key: string) => store[key] || null),
setItem: vi.fn((key: string, value: string) => {
store[key] = value
}),
removeItem: vi.fn((key: string) => {
delete store[key]
}),
clear: vi.fn(() => {
store = {}
}),
}
})()
Object.defineProperty(window, 'localStorage', { value: localStorageMock })
describe('MyAbacusContext - vision functionality', () => {
const wrapper = ({ children }: { children: ReactNode }) => (
<MyAbacusProvider>{children}</MyAbacusProvider>
)
beforeEach(() => {
vi.clearAllMocks()
localStorageMock.clear()
})
describe('visionConfig state', () => {
it('starts with vision disabled', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.visionConfig.enabled).toBe(false)
})
it('starts with null cameraDeviceId', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.visionConfig.cameraDeviceId).toBeNull()
})
it('starts with null calibration', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.visionConfig.calibration).toBeNull()
})
it('starts with null remoteCameraSessionId', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.visionConfig.remoteCameraSessionId).toBeNull()
})
})
describe('isVisionSetupComplete', () => {
it('returns false when camera is not set', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.isVisionSetupComplete).toBe(false)
})
it('returns false when calibration is not set', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionCamera('camera-123')
})
expect(result.current.isVisionSetupComplete).toBe(false)
})
it('returns true when both camera and calibration are set', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionCamera('camera-123')
result.current.setVisionCalibration({
roi: { x: 0, y: 0, width: 100, height: 100 },
columnCount: 5,
columnDividers: [],
rotation: 0,
})
})
expect(result.current.isVisionSetupComplete).toBe(true)
})
})
describe('setVisionEnabled', () => {
it('enables vision mode', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionEnabled(true)
})
expect(result.current.visionConfig.enabled).toBe(true)
})
it('disables vision mode', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionEnabled(true)
})
act(() => {
result.current.setVisionEnabled(false)
})
expect(result.current.visionConfig.enabled).toBe(false)
})
it('persists to localStorage', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionEnabled(true)
})
expect(localStorageMock.setItem).toHaveBeenCalledWith(
'abacus-vision-config',
expect.stringContaining('"enabled":true')
)
})
})
describe('setVisionCamera', () => {
it('sets camera device ID', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionCamera('camera-device-123')
})
expect(result.current.visionConfig.cameraDeviceId).toBe('camera-device-123')
})
it('clears camera device ID when set to null', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionCamera('camera-123')
})
act(() => {
result.current.setVisionCamera(null)
})
expect(result.current.visionConfig.cameraDeviceId).toBeNull()
})
it('persists to localStorage', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionCamera('camera-abc')
})
expect(localStorageMock.setItem).toHaveBeenCalledWith(
'abacus-vision-config',
expect.stringContaining('"cameraDeviceId":"camera-abc"')
)
})
})
describe('setVisionCalibration', () => {
it('sets calibration grid', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
const calibration = {
roi: { x: 10, y: 20, width: 200, height: 100 },
columnCount: 5,
columnDividers: [0.2, 0.4, 0.6, 0.8],
rotation: 0,
}
act(() => {
result.current.setVisionCalibration(calibration)
})
expect(result.current.visionConfig.calibration).toEqual(calibration)
})
it('clears calibration when set to null', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionCalibration({
roi: { x: 0, y: 0, width: 100, height: 100 },
columnCount: 5,
columnDividers: [],
rotation: 0,
})
})
act(() => {
result.current.setVisionCalibration(null)
})
expect(result.current.visionConfig.calibration).toBeNull()
})
})
describe('setVisionRemoteSession', () => {
it('sets remote camera session ID', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionRemoteSession('remote-session-456')
})
expect(result.current.visionConfig.remoteCameraSessionId).toBe('remote-session-456')
})
it('clears remote session when set to null', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.setVisionRemoteSession('session-123')
})
act(() => {
result.current.setVisionRemoteSession(null)
})
expect(result.current.visionConfig.remoteCameraSessionId).toBeNull()
})
})
describe('vision setup modal', () => {
it('starts with modal closed', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.isVisionSetupOpen).toBe(false)
})
it('opens the setup modal', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.openVisionSetup()
})
expect(result.current.isVisionSetupOpen).toBe(true)
})
it('closes the setup modal', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
act(() => {
result.current.openVisionSetup()
})
act(() => {
result.current.closeVisionSetup()
})
expect(result.current.isVisionSetupOpen).toBe(false)
})
})
describe('vision frame callback', () => {
it('setVisionFrameCallback sets the callback', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
const callback = vi.fn()
act(() => {
result.current.setVisionFrameCallback(callback)
})
// The callback should be stored (we can verify by emitting a frame)
const frame: VisionFrameData = {
imageData: 'test',
detectedValue: 123,
confidence: 0.9,
}
act(() => {
result.current.emitVisionFrame(frame)
})
expect(callback).toHaveBeenCalledWith(frame)
})
it('emitVisionFrame calls the registered callback', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
const callback = vi.fn()
act(() => {
result.current.setVisionFrameCallback(callback)
})
const frame: VisionFrameData = {
imageData: 'base64data',
detectedValue: 456,
confidence: 0.85,
}
act(() => {
result.current.emitVisionFrame(frame)
})
expect(callback).toHaveBeenCalledTimes(1)
expect(callback).toHaveBeenCalledWith(frame)
})
it('emitVisionFrame does nothing when no callback is set', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
// This should not throw
const frame: VisionFrameData = {
imageData: 'test',
detectedValue: 123,
confidence: 0.9,
}
expect(() => {
act(() => {
result.current.emitVisionFrame(frame)
})
}).not.toThrow()
})
it('clearing callback stops emissions', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
const callback = vi.fn()
act(() => {
result.current.setVisionFrameCallback(callback)
})
act(() => {
result.current.setVisionFrameCallback(null)
})
const frame: VisionFrameData = {
imageData: 'test',
detectedValue: 123,
confidence: 0.9,
}
act(() => {
result.current.emitVisionFrame(frame)
})
expect(callback).not.toHaveBeenCalled()
})
it('handles null detectedValue in frame', () => {
const { result } = renderHook(() => useMyAbacus(), { wrapper })
const callback = vi.fn()
act(() => {
result.current.setVisionFrameCallback(callback)
})
const frame: VisionFrameData = {
imageData: 'test',
detectedValue: null,
confidence: 0,
}
act(() => {
result.current.emitVisionFrame(frame)
})
expect(callback).toHaveBeenCalledWith({
imageData: 'test',
detectedValue: null,
confidence: 0,
})
})
})
describe('localStorage persistence', () => {
it('loads saved config from localStorage on mount', () => {
const savedConfig = {
enabled: false, // Always starts disabled per the code logic
cameraDeviceId: 'saved-camera',
calibration: {
roi: { x: 0, y: 0, width: 100, height: 100 },
columnCount: 5,
columnDividers: [],
rotation: 0,
},
remoteCameraSessionId: 'saved-session',
}
localStorageMock.getItem.mockReturnValueOnce(JSON.stringify(savedConfig))
const { result } = renderHook(() => useMyAbacus(), { wrapper })
// Wait for effect to run
expect(result.current.visionConfig.cameraDeviceId).toBe('saved-camera')
// Note: enabled is always false on load per the implementation
expect(result.current.visionConfig.enabled).toBe(false)
})
it('handles corrupted localStorage gracefully', () => {
localStorageMock.getItem.mockReturnValueOnce('invalid json {{{')
// Should not throw
const { result } = renderHook(() => useMyAbacus(), { wrapper })
expect(result.current.visionConfig).toBeDefined()
expect(result.current.visionConfig.enabled).toBe(false)
})
})
describe('negative cases', () => {
it('throws when useMyAbacus is used outside provider', () => {
// Using renderHook without the wrapper should throw
expect(() => {
renderHook(() => useMyAbacus())
}).toThrow('useMyAbacus must be used within MyAbacusProvider')
})
})
})

View File

@@ -65,6 +65,9 @@ export const abacusSettings = sqliteTable('abacus_settings', {
nativeAbacusNumbers: integer('native_abacus_numbers', { mode: 'boolean' })
.notNull()
.default(false),
/** Number of columns on the user's physical abacus (for vision detection) */
physicalAbacusColumns: integer('physical_abacus_columns').notNull().default(4),
})
export type AbacusSettings = typeof abacusSettings.$inferSelect

View File

@@ -0,0 +1,498 @@
/**
* Tests for useRemoteCameraDesktop hook
*
* Tests session persistence, auto-reconnection, and Socket.IO event handling.
*/
import { act, renderHook, waitFor } from '@testing-library/react'
import { afterEach, beforeEach, describe, expect, it, vi } from 'vitest'
import { useRemoteCameraDesktop } from '../useRemoteCameraDesktop'
// Mock socket.io-client - use vi.hoisted for variables referenced in vi.mock
const { mockSocket, mockIo } = vi.hoisted(() => {
const socket = {
id: 'test-socket-id',
on: vi.fn(),
off: vi.fn(),
emit: vi.fn(),
disconnect: vi.fn(),
connected: true,
}
return {
mockSocket: socket,
mockIo: vi.fn(() => socket),
}
})
vi.mock('socket.io-client', () => ({
io: mockIo,
}))
// Mock localStorage
const localStorageMock = (() => {
let store: Record<string, string> = {}
return {
getItem: vi.fn((key: string) => store[key] || null),
setItem: vi.fn((key: string, value: string) => {
store[key] = value
}),
removeItem: vi.fn((key: string) => {
delete store[key]
}),
clear: vi.fn(() => {
store = {}
}),
}
})()
Object.defineProperty(window, 'localStorage', {
value: localStorageMock,
})
describe('useRemoteCameraDesktop', () => {
beforeEach(() => {
vi.clearAllMocks()
localStorageMock.clear()
// Reset mock socket handlers
mockIo.mockClear()
mockSocket.on.mockClear()
mockSocket.off.mockClear()
mockSocket.emit.mockClear()
})
afterEach(() => {
vi.restoreAllMocks()
})
describe('initialization', () => {
it('should initialize with default state', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
expect(result.current.isPhoneConnected).toBe(false)
expect(result.current.latestFrame).toBeNull()
expect(result.current.frameRate).toBe(0)
expect(result.current.error).toBeNull()
expect(result.current.currentSessionId).toBeNull()
expect(result.current.isReconnecting).toBe(false)
})
it('should set up socket with reconnection config', () => {
renderHook(() => useRemoteCameraDesktop())
expect(mockIo).toHaveBeenCalledWith(
expect.objectContaining({
path: '/api/socket',
reconnection: true,
reconnectionDelay: 1000,
reconnectionDelayMax: 5000,
reconnectionAttempts: 10,
})
)
})
})
describe('localStorage persistence', () => {
it('should persist session ID when subscribing', async () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
// Simulate socket connect
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
if (connectHandler) {
act(() => {
connectHandler()
})
}
// Subscribe to a session
act(() => {
result.current.subscribe('test-session-123')
})
expect(localStorageMock.setItem).toHaveBeenCalledWith(
'remote-camera-session-id',
'test-session-123'
)
})
it('should return persisted session ID from getPersistedSessionId', () => {
localStorageMock.getItem.mockReturnValue('persisted-session-456')
const { result } = renderHook(() => useRemoteCameraDesktop())
const persistedId = result.current.getPersistedSessionId()
expect(persistedId).toBe('persisted-session-456')
})
it('should clear persisted session ID on clearSession', async () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
act(() => {
result.current.clearSession()
})
expect(localStorageMock.removeItem).toHaveBeenCalledWith('remote-camera-session-id')
})
})
describe('auto-reconnect on socket reconnect', () => {
it('should re-subscribe to persisted session on socket connect', () => {
localStorageMock.getItem.mockReturnValue('persisted-session-789')
renderHook(() => useRemoteCameraDesktop())
// Find the connect handler
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
expect(connectHandler).toBeDefined()
// Simulate socket connect
act(() => {
connectHandler()
})
// Should emit subscribe with persisted session
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:subscribe', {
sessionId: 'persisted-session-789',
})
})
it('should not subscribe if no persisted session', () => {
localStorageMock.getItem.mockReturnValue(null)
renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
// Should not emit subscribe
expect(mockSocket.emit).not.toHaveBeenCalledWith('remote-camera:subscribe', expect.anything())
})
})
describe('session subscription', () => {
it('should emit subscribe event with session ID', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
// Simulate connection
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('new-session-id')
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:subscribe', {
sessionId: 'new-session-id',
})
})
it('should update currentSessionId on subscribe', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
// Simulate connection
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('my-session')
})
expect(result.current.currentSessionId).toBe('my-session')
})
})
describe('event handling', () => {
it('should handle phone connected event', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
// Find the event handler setup
const setupHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:connected'
)?.[1]
if (setupHandler) {
act(() => {
setupHandler({ phoneConnected: true })
})
}
expect(result.current.isPhoneConnected).toBe(true)
})
it('should handle phone disconnected event', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
// Set connected first
const connectedHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:connected'
)?.[1]
if (connectedHandler) {
act(() => {
connectedHandler({ phoneConnected: true })
})
}
// Then disconnect
const disconnectedHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:disconnected'
)?.[1]
if (disconnectedHandler) {
act(() => {
disconnectedHandler({ phoneConnected: false })
})
}
expect(result.current.isPhoneConnected).toBe(false)
})
it('should handle frame events', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const frameHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:frame'
)?.[1]
const testFrame = {
imageData: 'base64-image-data',
timestamp: Date.now(),
mode: 'cropped' as const,
}
if (frameHandler) {
act(() => {
frameHandler(testFrame)
})
}
expect(result.current.latestFrame).toEqual(testFrame)
})
it('should handle error events and clear invalid sessions', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const errorHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:error'
)?.[1]
if (errorHandler) {
act(() => {
errorHandler({ error: 'Invalid session' })
})
}
expect(result.current.error).toBe('Invalid session')
expect(localStorageMock.removeItem).toHaveBeenCalledWith('remote-camera-session-id')
})
it('should handle torch state events', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const torchHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:torch-state'
)?.[1]
if (torchHandler) {
act(() => {
torchHandler({ isTorchOn: true, isTorchAvailable: true })
})
}
expect(result.current.isTorchOn).toBe(true)
expect(result.current.isTorchAvailable).toBe(true)
})
})
describe('calibration commands', () => {
it('should emit calibration to phone', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
// Simulate connection and subscription
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('calibration-session')
})
const corners = {
topLeft: { x: 0, y: 0 },
topRight: { x: 100, y: 0 },
bottomLeft: { x: 0, y: 100 },
bottomRight: { x: 100, y: 100 },
}
act(() => {
result.current.sendCalibration(corners)
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:set-calibration', {
sessionId: 'calibration-session',
corners,
})
})
it('should emit clear calibration to phone', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('clear-cal-session')
})
act(() => {
result.current.clearCalibration()
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:clear-calibration', {
sessionId: 'clear-cal-session',
})
})
})
describe('frame mode control', () => {
it('should emit frame mode change to phone', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('mode-session')
})
act(() => {
result.current.setPhoneFrameMode('raw')
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:set-mode', {
sessionId: 'mode-session',
mode: 'raw',
})
})
})
describe('torch control', () => {
it('should emit torch command to phone', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('torch-session')
})
act(() => {
result.current.setRemoteTorch(true)
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:set-torch', {
sessionId: 'torch-session',
on: true,
})
})
it('should optimistically update torch state', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('torch-session-2')
})
act(() => {
result.current.setRemoteTorch(true)
})
expect(result.current.isTorchOn).toBe(true)
})
})
describe('cleanup', () => {
it('should emit leave on unsubscribe', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('leave-session')
})
act(() => {
result.current.unsubscribe()
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:leave', {
sessionId: 'leave-session',
})
})
it('should reset state on unsubscribe', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('reset-session')
})
// Set some state
const connectedHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:connected'
)?.[1]
if (connectedHandler) {
act(() => {
connectedHandler({ phoneConnected: true })
})
}
act(() => {
result.current.unsubscribe()
})
expect(result.current.isPhoneConnected).toBe(false)
expect(result.current.latestFrame).toBeNull()
expect(result.current.frameRate).toBe(0)
})
it('should clear all state on clearSession', () => {
const { result } = renderHook(() => useRemoteCameraDesktop())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.subscribe('clear-session')
})
act(() => {
result.current.clearSession()
})
expect(result.current.currentSessionId).toBeNull()
expect(result.current.isPhoneConnected).toBe(false)
expect(result.current.isReconnecting).toBe(false)
expect(localStorageMock.removeItem).toHaveBeenCalledWith('remote-camera-session-id')
})
})
})

View File

@@ -0,0 +1,498 @@
/**
* Tests for useRemoteCameraPhone hook
*
* Tests socket connection, auto-reconnection, and frame sending behavior.
*/
import { act, renderHook } from '@testing-library/react'
import { afterEach, beforeEach, describe, expect, it, vi } from 'vitest'
import { useRemoteCameraPhone } from '../useRemoteCameraPhone'
// Mock socket.io-client - use vi.hoisted for variables referenced in vi.mock
const { mockSocket, mockIo } = vi.hoisted(() => {
const socket = {
id: 'test-phone-socket-id',
on: vi.fn(),
off: vi.fn(),
emit: vi.fn(),
disconnect: vi.fn(),
connected: true,
}
return {
mockSocket: socket,
mockIo: vi.fn(() => socket),
}
})
vi.mock('socket.io-client', () => ({
io: mockIo,
}))
// Mock OpenCV loading
vi.mock('@/lib/vision/perspectiveTransform', () => ({
loadOpenCV: vi.fn(() => Promise.resolve()),
isOpenCVReady: vi.fn(() => true),
rectifyQuadrilateralToBase64: vi.fn(() => 'mock-base64-image'),
}))
describe('useRemoteCameraPhone', () => {
beforeEach(() => {
vi.clearAllMocks()
mockIo.mockClear()
mockSocket.on.mockClear()
mockSocket.off.mockClear()
mockSocket.emit.mockClear()
})
afterEach(() => {
vi.restoreAllMocks()
})
describe('initialization', () => {
it('should initialize with default state', async () => {
const { result } = renderHook(() => useRemoteCameraPhone())
expect(result.current.isConnected).toBe(false)
expect(result.current.isSending).toBe(false)
expect(result.current.frameMode).toBe('raw')
expect(result.current.desktopCalibration).toBeNull()
expect(result.current.error).toBeNull()
})
it('should set up socket with reconnection config', () => {
renderHook(() => useRemoteCameraPhone())
expect(mockIo).toHaveBeenCalledWith(
expect.objectContaining({
path: '/api/socket',
reconnection: true,
reconnectionDelay: 1000,
reconnectionDelayMax: 5000,
reconnectionAttempts: 10,
})
)
})
})
describe('session connection', () => {
it('should emit join event when connecting', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
// Simulate socket connect
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
if (connectHandler) {
act(() => {
connectHandler()
})
}
act(() => {
result.current.connect('phone-session-123')
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:join', {
sessionId: 'phone-session-123',
})
})
it('should update isConnected on connect', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
if (connectHandler) {
act(() => {
connectHandler()
})
}
act(() => {
result.current.connect('connect-session')
})
expect(result.current.isConnected).toBe(true)
})
it('should set error if socket not connected', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
// Don't simulate connect - socket is not connected
act(() => {
result.current.connect('fail-session')
})
expect(result.current.error).toBe('Socket not connected')
})
})
describe('auto-reconnect on socket reconnect', () => {
it('should re-join session on socket reconnect', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
// Initial connect
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
// Connect to session
act(() => {
result.current.connect('reconnect-session')
})
// Clear emit calls
mockSocket.emit.mockClear()
// Simulate socket reconnect (connect event fires again)
act(() => {
connectHandler()
})
// Should auto-rejoin
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:join', {
sessionId: 'reconnect-session',
})
})
it('should not rejoin if no session was set', () => {
renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
mockSocket.emit.mockClear()
// Simulate reconnect without ever connecting to a session
act(() => {
connectHandler()
})
expect(mockSocket.emit).not.toHaveBeenCalledWith('remote-camera:join', expect.anything())
})
})
describe('socket disconnect handling', () => {
it('should not clear session on temporary disconnect', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('persist-session')
})
// Simulate temporary disconnect
const disconnectHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'disconnect'
)?.[1]
act(() => {
disconnectHandler('transport close')
})
// Session ref should still be set (will reconnect)
// isConnected might be false but session should persist internally
})
it('should clear state on server disconnect', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('server-disconnect-session')
})
const disconnectHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'disconnect'
)?.[1]
act(() => {
disconnectHandler('io server disconnect')
})
expect(result.current.isConnected).toBe(false)
})
})
describe('desktop commands', () => {
it('should handle set-mode command from desktop', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const setModeHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:set-mode'
)?.[1]
if (setModeHandler) {
act(() => {
setModeHandler({ mode: 'cropped' })
})
}
expect(result.current.frameMode).toBe('cropped')
})
it('should handle set-calibration command from desktop', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const calibrationHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:set-calibration'
)?.[1]
const corners = {
topLeft: { x: 10, y: 10 },
topRight: { x: 100, y: 10 },
bottomLeft: { x: 10, y: 100 },
bottomRight: { x: 100, y: 100 },
}
if (calibrationHandler) {
act(() => {
calibrationHandler({ corners })
})
}
expect(result.current.desktopCalibration).toEqual(corners)
// Should auto-switch to cropped mode
expect(result.current.frameMode).toBe('cropped')
})
it('should handle clear-calibration command from desktop', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
// First set calibration
const calibrationHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:set-calibration'
)?.[1]
if (calibrationHandler) {
act(() => {
calibrationHandler({
corners: {
topLeft: { x: 0, y: 0 },
topRight: { x: 100, y: 0 },
bottomLeft: { x: 0, y: 100 },
bottomRight: { x: 100, y: 100 },
},
})
})
}
expect(result.current.desktopCalibration).not.toBeNull()
// Then clear it
const clearHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:clear-calibration'
)?.[1]
if (clearHandler) {
act(() => {
clearHandler()
})
}
expect(result.current.desktopCalibration).toBeNull()
})
it('should handle set-torch command from desktop', () => {
const torchCallback = vi.fn()
renderHook(() => useRemoteCameraPhone({ onTorchRequest: torchCallback }))
const torchHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:set-torch'
)?.[1]
if (torchHandler) {
act(() => {
torchHandler({ on: true })
})
}
expect(torchCallback).toHaveBeenCalledWith(true)
})
})
describe('frame mode', () => {
it('should allow setting frame mode locally', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
act(() => {
result.current.setFrameMode('cropped')
})
expect(result.current.frameMode).toBe('cropped')
})
})
describe('torch state emission', () => {
it('should emit torch state to desktop', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('torch-emit-session')
})
act(() => {
result.current.emitTorchState(true, true)
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:torch-state', {
sessionId: 'torch-emit-session',
isTorchOn: true,
isTorchAvailable: true,
})
})
})
describe('disconnect', () => {
it('should emit leave event on disconnect', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('disconnect-session')
})
act(() => {
result.current.disconnect()
})
expect(mockSocket.emit).toHaveBeenCalledWith('remote-camera:leave', {
sessionId: 'disconnect-session',
})
})
it('should reset state on disconnect', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('reset-disconnect-session')
})
expect(result.current.isConnected).toBe(true)
act(() => {
result.current.disconnect()
})
expect(result.current.isConnected).toBe(false)
})
})
describe('error handling', () => {
it('should handle error events', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const errorHandler = mockSocket.on.mock.calls.find(
(call) => call[0] === 'remote-camera:error'
)?.[1]
if (errorHandler) {
act(() => {
errorHandler({ error: 'Session expired' })
})
}
expect(result.current.error).toBe('Session expired')
expect(result.current.isConnected).toBe(false)
})
})
describe('calibration update', () => {
it('should update calibration for frame processing', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const newCalibration = {
topLeft: { x: 20, y: 20 },
topRight: { x: 200, y: 20 },
bottomLeft: { x: 20, y: 200 },
bottomRight: { x: 200, y: 200 },
}
act(() => {
result.current.updateCalibration(newCalibration)
})
// The calibration is stored in a ref for frame processing
// We can verify by checking that no error is thrown
})
})
describe('sending frames', () => {
it('should set isSending when startSending is called', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('sending-session')
})
// Create mock video element
const mockVideo = document.createElement('video')
act(() => {
result.current.startSending(mockVideo)
})
expect(result.current.isSending).toBe(true)
})
it('should set error if not connected when starting to send', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const mockVideo = document.createElement('video')
act(() => {
result.current.startSending(mockVideo)
})
expect(result.current.error).toBe('Not connected to session')
})
it('should reset isSending on stopSending', () => {
const { result } = renderHook(() => useRemoteCameraPhone())
const connectHandler = mockSocket.on.mock.calls.find((call) => call[0] === 'connect')?.[1]
act(() => {
connectHandler()
})
act(() => {
result.current.connect('stop-sending-session')
})
const mockVideo = document.createElement('video')
act(() => {
result.current.startSending(mockVideo)
})
act(() => {
result.current.stopSending()
})
expect(result.current.isSending).toBe(false)
})
})
})

View File

@@ -0,0 +1,218 @@
/**
* Unit tests for useSessionBroadcast vision frame broadcasting
*/
import { act, renderHook } from '@testing-library/react'
import { beforeEach, describe, expect, it, vi } from 'vitest'
import type { BroadcastState } from '@/components/practice'
import { useSessionBroadcast } from '../useSessionBroadcast'
// Mock socket.io-client
const mockSocket = {
on: vi.fn(),
off: vi.fn(),
emit: vi.fn(),
disconnect: vi.fn(),
connected: true,
}
vi.mock('socket.io-client', () => ({
io: vi.fn(() => mockSocket),
}))
describe('useSessionBroadcast - vision frame broadcasting', () => {
beforeEach(() => {
vi.clearAllMocks()
mockSocket.on.mockReset()
mockSocket.emit.mockReset()
})
const createMockBroadcastState = (): BroadcastState => ({
currentProblem: { terms: [5, 3], answer: 8 },
phase: 'problem',
studentAnswer: '',
isCorrect: null,
startedAt: Date.now(),
purpose: 'focus',
complexity: undefined,
currentProblemNumber: 1,
totalProblems: 10,
sessionParts: [],
currentPartIndex: 0,
currentSlotIndex: 0,
slotResults: [],
})
describe('sendVisionFrame', () => {
it('returns sendVisionFrame function', () => {
const { result } = renderHook(() =>
useSessionBroadcast('session-123', 'player-456', createMockBroadcastState())
)
expect(result.current.sendVisionFrame).toBeDefined()
expect(typeof result.current.sendVisionFrame).toBe('function')
})
it('emits vision-frame event with correct payload when connected', async () => {
// Simulate connection
let connectHandler: (() => void) | undefined
mockSocket.on.mockImplementation((event: string, handler: unknown) => {
if (event === 'connect') {
connectHandler = handler as () => void
}
return mockSocket
})
const { result } = renderHook(() =>
useSessionBroadcast('session-123', 'player-456', createMockBroadcastState())
)
// Trigger connect
act(() => {
connectHandler?.()
})
// Send vision frame
const imageData = 'base64ImageData=='
const detectedValue = 456
const confidence = 0.92
act(() => {
result.current.sendVisionFrame(imageData, detectedValue, confidence)
})
expect(mockSocket.emit).toHaveBeenCalledWith(
'vision-frame',
expect.objectContaining({
sessionId: 'session-123',
imageData: 'base64ImageData==',
detectedValue: 456,
confidence: 0.92,
timestamp: expect.any(Number),
})
)
})
it('includes timestamp in vision-frame event', async () => {
const now = Date.now()
vi.setSystemTime(now)
let connectHandler: (() => void) | undefined
mockSocket.on.mockImplementation((event: string, handler: unknown) => {
if (event === 'connect') {
connectHandler = handler as () => void
}
return mockSocket
})
const { result } = renderHook(() =>
useSessionBroadcast('session-123', 'player-456', createMockBroadcastState())
)
act(() => {
connectHandler?.()
})
act(() => {
result.current.sendVisionFrame('imageData', 123, 0.95)
})
expect(mockSocket.emit).toHaveBeenCalledWith(
'vision-frame',
expect.objectContaining({
timestamp: now,
})
)
vi.useRealTimers()
})
it('handles null detectedValue', async () => {
let connectHandler: (() => void) | undefined
mockSocket.on.mockImplementation((event: string, handler: unknown) => {
if (event === 'connect') {
connectHandler = handler as () => void
}
return mockSocket
})
const { result } = renderHook(() =>
useSessionBroadcast('session-123', 'player-456', createMockBroadcastState())
)
act(() => {
connectHandler?.()
})
act(() => {
result.current.sendVisionFrame('imageData', null, 0)
})
expect(mockSocket.emit).toHaveBeenCalledWith(
'vision-frame',
expect.objectContaining({
detectedValue: null,
confidence: 0,
})
)
})
})
describe('negative cases', () => {
it('does not emit when sessionId is undefined', () => {
const { result } = renderHook(() =>
useSessionBroadcast(undefined, 'player-456', createMockBroadcastState())
)
act(() => {
result.current.sendVisionFrame('imageData', 123, 0.95)
})
expect(mockSocket.emit).not.toHaveBeenCalledWith('vision-frame', expect.anything())
})
it('does not emit when not connected', () => {
// Don't trigger connect handler
const { result } = renderHook(() =>
useSessionBroadcast('session-123', 'player-456', createMockBroadcastState())
)
act(() => {
result.current.sendVisionFrame('imageData', 123, 0.95)
})
// The join-session emit happens on connect, but vision-frame should not
const visionFrameCalls = mockSocket.emit.mock.calls.filter(
([event]) => event === 'vision-frame'
)
expect(visionFrameCalls).toHaveLength(0)
})
it('does not emit when state is null', () => {
const { result } = renderHook(() => useSessionBroadcast('session-123', 'player-456', null))
act(() => {
result.current.sendVisionFrame('imageData', 123, 0.95)
})
// Should still not emit vision-frame (no connection due to null state cleanup logic)
const visionFrameCalls = mockSocket.emit.mock.calls.filter(
([event]) => event === 'vision-frame'
)
expect(visionFrameCalls).toHaveLength(0)
})
})
describe('result interface', () => {
it('includes sendVisionFrame in the result', () => {
const { result } = renderHook(() =>
useSessionBroadcast('session-123', 'player-456', createMockBroadcastState())
)
expect(result.current).toHaveProperty('sendVisionFrame')
expect(result.current).toHaveProperty('isConnected')
expect(result.current).toHaveProperty('isBroadcasting')
expect(result.current).toHaveProperty('sendPartTransition')
expect(result.current).toHaveProperty('sendPartTransitionComplete')
})
})
})

View File

@@ -0,0 +1,255 @@
/**
* Unit tests for useSessionObserver vision frame receiving
*/
import { act, renderHook, waitFor } from '@testing-library/react'
import { beforeEach, describe, expect, it, vi } from 'vitest'
import type { VisionFrameEvent } from '@/lib/classroom/socket-events'
import { useSessionObserver } from '../useSessionObserver'
// Mock socket.io-client
const mockSocket = {
on: vi.fn(),
off: vi.fn(),
emit: vi.fn(),
disconnect: vi.fn(),
connected: true,
}
vi.mock('socket.io-client', () => ({
io: vi.fn(() => mockSocket),
}))
describe('useSessionObserver - vision frame receiving', () => {
let eventHandlers: Map<string, (data: unknown) => void>
beforeEach(() => {
vi.clearAllMocks()
eventHandlers = new Map()
// Capture event handlers
mockSocket.on.mockImplementation((event: string, handler: unknown) => {
eventHandlers.set(event, handler as (data: unknown) => void)
return mockSocket
})
})
describe('visionFrame state', () => {
it('initially returns null visionFrame', () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
expect(result.current.visionFrame).toBeNull()
})
it('updates visionFrame when vision-frame event is received', async () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
// Simulate receiving a vision frame event
const visionFrameData: VisionFrameEvent = {
sessionId: 'session-123',
imageData: 'base64ImageData==',
detectedValue: 456,
confidence: 0.92,
timestamp: Date.now(),
}
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.(visionFrameData)
})
await waitFor(() => {
expect(result.current.visionFrame).not.toBeNull()
expect(result.current.visionFrame?.imageData).toBe('base64ImageData==')
expect(result.current.visionFrame?.detectedValue).toBe(456)
expect(result.current.visionFrame?.confidence).toBe(0.92)
expect(result.current.visionFrame?.receivedAt).toBeDefined()
})
})
it('sets receivedAt to current time when frame is received', async () => {
const now = Date.now()
vi.setSystemTime(now)
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
const visionFrameData: VisionFrameEvent = {
sessionId: 'session-123',
imageData: 'imageData',
detectedValue: 123,
confidence: 0.9,
timestamp: now - 100, // Sent 100ms ago
}
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.(visionFrameData)
})
await waitFor(() => {
expect(result.current.visionFrame?.receivedAt).toBe(now)
})
vi.useRealTimers()
})
it('updates visionFrame with new frames', async () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
// First frame
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.({
sessionId: 'session-123',
imageData: 'firstFrame',
detectedValue: 100,
confidence: 0.8,
timestamp: Date.now(),
})
})
await waitFor(() => {
expect(result.current.visionFrame?.detectedValue).toBe(100)
})
// Second frame
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.({
sessionId: 'session-123',
imageData: 'secondFrame',
detectedValue: 200,
confidence: 0.95,
timestamp: Date.now(),
})
})
await waitFor(() => {
expect(result.current.visionFrame?.detectedValue).toBe(200)
expect(result.current.visionFrame?.imageData).toBe('secondFrame')
})
})
it('handles null detectedValue in frames', async () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
const visionFrameData: VisionFrameEvent = {
sessionId: 'session-123',
imageData: 'imageData',
detectedValue: null,
confidence: 0,
timestamp: Date.now(),
}
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.(visionFrameData)
})
await waitFor(() => {
expect(result.current.visionFrame?.detectedValue).toBeNull()
expect(result.current.visionFrame?.confidence).toBe(0)
})
})
})
describe('cleanup', () => {
it('clears visionFrame on stopObserving', async () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
// Receive a frame
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.({
sessionId: 'session-123',
imageData: 'imageData',
detectedValue: 123,
confidence: 0.9,
timestamp: Date.now(),
})
})
await waitFor(() => {
expect(result.current.visionFrame).not.toBeNull()
})
// Stop observing
act(() => {
result.current.stopObserving()
})
await waitFor(() => {
expect(result.current.visionFrame).toBeNull()
})
})
})
describe('result interface', () => {
it('includes visionFrame in the result', () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
expect(result.current).toHaveProperty('visionFrame')
expect(result.current).toHaveProperty('state')
expect(result.current).toHaveProperty('results')
expect(result.current).toHaveProperty('transitionState')
expect(result.current).toHaveProperty('isConnected')
expect(result.current).toHaveProperty('isObserving')
expect(result.current).toHaveProperty('error')
})
})
describe('negative cases', () => {
it('does not update visionFrame when observer is disabled', () => {
const { result } = renderHook(
() => useSessionObserver('session-123', 'observer-456', 'player-789', false) // disabled
)
// The socket won't be created when disabled
expect(eventHandlers.size).toBe(0)
expect(result.current.visionFrame).toBeNull()
})
it('does not update visionFrame when sessionId is undefined', () => {
const { result } = renderHook(() =>
useSessionObserver(undefined, 'observer-456', 'player-789', true)
)
expect(result.current.visionFrame).toBeNull()
expect(result.current.isObserving).toBe(false)
})
it('handles empty imageData gracefully', async () => {
const { result } = renderHook(() =>
useSessionObserver('session-123', 'observer-456', 'player-789', true)
)
act(() => {
const handler = eventHandlers.get('vision-frame')
handler?.({
sessionId: 'session-123',
imageData: '',
detectedValue: 123,
confidence: 0.9,
timestamp: Date.now(),
})
})
await waitFor(() => {
expect(result.current.visionFrame?.imageData).toBe('')
})
})
})
})

View File

@@ -8,6 +8,11 @@ import {
isArucoAvailable,
loadAruco,
} from '@/lib/vision/arucoDetection'
import {
analyzeColumns,
analysesToDigits,
digitsToNumber as cvDigitsToNumber,
} from '@/lib/vision/beadDetector'
import { digitsToNumber, getMinConfidence, processVideoFrame } from '@/lib/vision/frameProcessor'
import type {
CalibrationGrid,
@@ -83,6 +88,10 @@ export function useAbacusVision(options: UseAbacusVisionOptions = {}): UseAbacus
// Track previous stable value to avoid duplicate callbacks
const lastStableValueRef = useRef<number | null>(null)
// Throttle detection (CV is fast, 10fps is plenty)
const lastInferenceTimeRef = useRef<number>(0)
const INFERENCE_INTERVAL_MS = 100 // 10fps
// Ref for calibration functions to avoid infinite loop in auto-calibration effect
const calibrationRef = useRef(calibration)
calibrationRef.current = calibration
@@ -271,9 +280,16 @@ export function useAbacusVision(options: UseAbacusVisionOptions = {}): UseAbacus
}, [calibration])
/**
* Process a video frame for detection using TensorFlow.js classifier
* Process a video frame for detection using CV-based bead detection
*/
const processFrame = useCallback(async () => {
// Throttle inference for performance (10fps)
const now = performance.now()
if (now - lastInferenceTimeRef.current < INFERENCE_INTERVAL_MS) {
return
}
lastInferenceTimeRef.current = now
// Get video element from camera stream
const videoElements = document.querySelectorAll('video')
let video: HTMLVideoElement | null = null
@@ -292,24 +308,33 @@ export function useAbacusVision(options: UseAbacusVisionOptions = {}): UseAbacus
// Process video frame into column strips
const columnImages = processVideoFrame(video, calibration.calibration)
if (columnImages.length === 0) return
// Run classification
const result = await classifier.classifyColumns(columnImages)
// Use CV-based bead detection instead of ML
const analyses = analyzeColumns(columnImages)
const { digits, confidences, minConfidence } = analysesToDigits(analyses)
if (!result) return
// Log analysis for debugging
console.log(
'[CV] Bead analysis:',
analyses.map((a) => ({
digit: a.digit,
conf: a.confidence.toFixed(2),
heaven: a.heavenActive ? '5' : '0',
earth: a.earthActiveCount,
bar: a.reckoningBarPosition.toFixed(2),
}))
)
// Update column confidences
setColumnConfidences(result.confidences)
setColumnConfidences(confidences)
// Convert digits to number
const detectedValue = digitsToNumber(result.digits)
const minConfidence = getMinConfidence(result.confidences)
const detectedValue = cvDigitsToNumber(digits)
// Push to stability buffer
stability.pushFrame(detectedValue, minConfidence)
}, [camera.videoStream, calibration.isCalibrated, calibration.calibration, stability, classifier])
}, [camera.videoStream, calibration.isCalibrated, calibration.calibration, stability])
/**
* Detection loop
@@ -431,6 +456,9 @@ export function useAbacusVision(options: UseAbacusVisionOptions = {}): UseAbacus
selectedDeviceId: camera.currentDevice?.deviceId ?? null,
availableDevices: camera.availableDevices,
isDeskViewDetected: camera.isDeskViewDetected,
facingMode: camera.facingMode,
isTorchOn: camera.isTorchOn,
isTorchAvailable: camera.isTorchAvailable,
// Calibration state
calibrationGrid: calibration.calibration,
@@ -451,5 +479,7 @@ export function useAbacusVision(options: UseAbacusVisionOptions = {}): UseAbacus
selectCamera,
resetCalibration,
setCalibrationMode,
flipCamera: camera.flipCamera,
toggleTorch: camera.toggleTorch,
}
}

View File

@@ -86,7 +86,6 @@ export function useColumnClassifier(): UseColumnClassifierReturn {
setIsModelLoaded(true)
return true
} else {
// Model doesn't exist - not an error, just unavailable
setIsModelUnavailable(true)
return false
}
@@ -144,6 +143,9 @@ export function useColumnClassifier(): UseColumnClassifierReturn {
const results = await classifier.classifyColumns(columnImages)
// Model unavailable
if (!results) return null
return {
digits: results.map((r) => r.digit),
confidences: results.map((r) => r.confidence),

View File

@@ -16,6 +16,12 @@ export interface UseDeskViewCameraReturn {
availableDevices: MediaDeviceInfo[]
/** Whether Desk View camera was auto-detected */
isDeskViewDetected: boolean
/** Current facing mode */
facingMode: 'user' | 'environment'
/** Whether torch is currently on */
isTorchOn: boolean
/** Whether torch is available on current device */
isTorchAvailable: boolean
/** Request camera access, optionally specifying device ID */
requestCamera: (deviceId?: string) => Promise<void>
@@ -23,6 +29,10 @@ export interface UseDeskViewCameraReturn {
stopCamera: () => void
/** Refresh device list */
enumerateDevices: () => Promise<MediaDeviceInfo[]>
/** Flip between front and back camera */
flipCamera: () => Promise<void>
/** Toggle torch on/off */
toggleTorch: () => Promise<void>
}
/**
@@ -38,9 +48,13 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
const [currentDevice, setCurrentDevice] = useState<MediaDeviceInfo | null>(null)
const [availableDevices, setAvailableDevices] = useState<MediaDeviceInfo[]>([])
const [isDeskViewDetected, setIsDeskViewDetected] = useState(false)
const [facingMode, setFacingMode] = useState<'user' | 'environment'>('environment')
const [isTorchOn, setIsTorchOn] = useState(false)
const [isTorchAvailable, setIsTorchAvailable] = useState(false)
const streamRef = useRef<MediaStream | null>(null)
const requestIdRef = useRef(0) // Track request ID to ignore stale completions
const facingModeRef = useRef<'user' | 'environment'>('environment')
/**
* Enumerate available video input devices
@@ -80,6 +94,35 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
[isDeskViewDevice]
)
/**
* Check if torch is available on a video track
*/
const checkTorchAvailability = useCallback((track: MediaStreamTrack): boolean => {
try {
const capabilities = track.getCapabilities() as MediaTrackCapabilities & {
torch?: boolean
}
return capabilities.torch === true
} catch {
return false
}
}, [])
/**
* Apply torch setting to track
*/
const applyTorch = useCallback(async (track: MediaStreamTrack, on: boolean): Promise<boolean> => {
try {
await track.applyConstraints({
advanced: [{ torch: on } as MediaTrackConstraintSet],
})
return true
} catch (err) {
console.warn('[DeskViewCamera] Failed to apply torch:', err)
return false
}
}, [])
/**
* Request camera access
*/
@@ -119,10 +162,15 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
video: {
width: { ideal: 1920 },
height: { ideal: 1440 },
// Prefer widest angle lens (zoom: 1 = no zoom = widest)
// @ts-expect-error - zoom is valid but not in TS types
zoom: { ideal: 1 },
// Try to disable face-tracking auto-focus (not all cameras support this)
// @ts-expect-error - focusMode is valid but not in TS types
focusMode: 'continuous',
...(targetDeviceId ? { deviceId: { exact: targetDeviceId } } : {}),
...(targetDeviceId
? { deviceId: { exact: targetDeviceId } }
: { facingMode: { ideal: facingModeRef.current } }),
},
audio: false,
}
@@ -140,7 +188,7 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
streamRef.current = stream
setVideoStream(stream)
// Find which device we got
// Find which device we got and check torch availability
const videoTrack = stream.getVideoTracks()[0]
if (videoTrack) {
const settings = videoTrack.getSettings()
@@ -149,6 +197,11 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
setCurrentDevice(matchingDevice)
setIsDeskViewDetected(isDeskViewDevice(matchingDevice))
}
// Check torch availability
const torchAvailable = checkTorchAvailability(videoTrack)
setIsTorchAvailable(torchAvailable)
setIsTorchOn(false)
}
setIsLoading(false)
@@ -158,7 +211,7 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
setIsLoading(false)
}
},
[enumerateDevices, findDeskViewCamera, isDeskViewDevice]
[enumerateDevices, findDeskViewCamera, isDeskViewDevice, checkTorchAvailability]
)
/**
@@ -176,6 +229,8 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
setVideoStream(null)
setCurrentDevice(null)
setError(null)
setIsTorchOn(false)
setIsTorchAvailable(false)
}, [])
// Cleanup on unmount
@@ -206,6 +261,33 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
}
}, [enumerateDevices])
/**
* Flip between front and back camera
*/
const flipCamera = useCallback(async () => {
const newFacingMode = facingMode === 'user' ? 'environment' : 'user'
facingModeRef.current = newFacingMode
setFacingMode(newFacingMode)
// Re-request camera with new facing mode (don't pass device ID to use facingMode)
await requestCamera()
}, [facingMode, requestCamera])
/**
* Toggle torch on/off
*/
const toggleTorch = useCallback(async () => {
if (!streamRef.current || !isTorchAvailable) return
const videoTrack = streamRef.current.getVideoTracks()[0]
if (!videoTrack) return
const newState = !isTorchOn
const success = await applyTorch(videoTrack, newState)
if (success) {
setIsTorchOn(newState)
}
}, [isTorchAvailable, isTorchOn, applyTorch])
return {
isLoading,
error,
@@ -213,8 +295,13 @@ export function useDeskViewCamera(): UseDeskViewCameraReturn {
currentDevice,
availableDevices,
isDeskViewDetected,
facingMode,
isTorchOn,
isTorchAvailable,
requestCamera,
stopCamera,
enumerateDevices,
flipCamera,
toggleTorch,
}
}

View File

@@ -117,11 +117,14 @@ export function usePhoneCamera(options: UsePhoneCameraOptions = {}): UsePhoneCam
}
// Request camera with specified facing mode
// Prefer widest angle lens (zoom: 1 = no zoom = widest)
const constraints: MediaStreamConstraints = {
video: {
facingMode: { ideal: targetFacingMode },
width: { ideal: 1280 },
height: { ideal: 720 },
// @ts-expect-error - zoom is valid but not in TS types
zoom: { ideal: 1 },
},
audio: false,
}

View File

@@ -7,6 +7,9 @@ import type { QuadCorners } from '@/types/vision'
/** Frame mode: raw sends uncropped frames, cropped applies calibration */
export type FrameMode = 'raw' | 'cropped'
/** LocalStorage key for persisting session ID */
const STORAGE_KEY = 'remote-camera-session-id'
interface RemoteCameraFrame {
imageData: string // Base64 JPEG
timestamp: number
@@ -25,8 +28,16 @@ interface UseRemoteCameraDesktopReturn {
frameMode: FrameMode
/** Video dimensions from the phone (only available in raw mode) */
videoDimensions: { width: number; height: number } | null
/** Whether the phone's torch is on */
isTorchOn: boolean
/** Whether the phone has torch available */
isTorchAvailable: boolean
/** Error message if connection failed */
error: string | null
/** Current session ID (null if not subscribed) */
currentSessionId: string | null
/** Whether actively trying to reconnect */
isReconnecting: boolean
/** Subscribe to receive frames for a session */
subscribe: (sessionId: string) => void
/** Unsubscribe from the session */
@@ -35,6 +46,14 @@ interface UseRemoteCameraDesktopReturn {
setPhoneFrameMode: (mode: FrameMode) => void
/** Send calibration to the phone */
sendCalibration: (corners: QuadCorners) => void
/** Clear desktop calibration on phone (go back to auto-detection) */
clearCalibration: () => void
/** Set phone's torch state */
setRemoteTorch: (on: boolean) => void
/** Get the persisted session ID (if any) */
getPersistedSessionId: () => string | null
/** Clear persisted session and disconnect */
clearSession: () => void
}
/**
@@ -55,25 +74,72 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
width: number
height: number
} | null>(null)
const [isTorchOn, setIsTorchOn] = useState(false)
const [isTorchAvailable, setIsTorchAvailable] = useState(false)
const [error, setError] = useState<string | null>(null)
const currentSessionId = useRef<string | null>(null)
const [currentSessionId, setCurrentSessionId] = useState<string | null>(null)
const [isReconnecting, setIsReconnecting] = useState(false)
// Refs for values needed in callbacks
const currentSessionIdRef = useRef<string | null>(null)
const reconnectAttemptRef = useRef(0)
const reconnectTimeoutRef = useRef<NodeJS.Timeout | null>(null)
// Frame rate calculation
const frameTimestamps = useRef<number[]>([])
// Initialize socket connection
// Helper to persist session ID
const persistSessionId = useCallback((sessionId: string | null) => {
if (sessionId) {
localStorage.setItem(STORAGE_KEY, sessionId)
} else {
localStorage.removeItem(STORAGE_KEY)
}
}, [])
// Helper to get persisted session ID
const getPersistedSessionId = useCallback((): string | null => {
if (typeof window === 'undefined') return null
return localStorage.getItem(STORAGE_KEY)
}, [])
// Initialize socket connection with reconnection support
useEffect(() => {
console.log('[RemoteCameraDesktop] Initializing socket connection...')
const socketInstance = io({
path: '/api/socket',
autoConnect: true,
reconnection: true,
reconnectionDelay: 1000,
reconnectionDelayMax: 5000,
reconnectionAttempts: 10,
})
socketInstance.on('connect', () => {
console.log('[RemoteCameraDesktop] Socket connected! ID:', socketInstance.id)
setIsConnected(true)
// If we have a session ID (either from state or localStorage), re-subscribe
const sessionId = currentSessionIdRef.current || getPersistedSessionId()
if (sessionId) {
console.log('[RemoteCameraDesktop] Re-subscribing to session after reconnect:', sessionId)
setIsReconnecting(true)
socketInstance.emit('remote-camera:subscribe', { sessionId })
}
})
socketInstance.on('disconnect', () => {
socketInstance.on('connect_error', (error) => {
console.error('[RemoteCameraDesktop] Socket connect error:', error)
})
socketInstance.on('disconnect', (reason) => {
console.log('[RemoteCameraDesktop] Socket disconnected:', reason)
setIsConnected(false)
// Don't clear phone connected state immediately - might reconnect
if (reason === 'io server disconnect') {
// Server forced disconnect - clear state
setIsPhoneConnected(false)
}
})
setSocket(socketInstance)
@@ -81,7 +147,7 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
return () => {
socketInstance.disconnect()
}
}, [])
}, [getPersistedSessionId])
const calculateFrameRate = useCallback(() => {
const now = Date.now()
@@ -95,18 +161,25 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
if (!socket) return
const handleConnected = ({ phoneConnected }: { phoneConnected: boolean }) => {
console.log('[RemoteCameraDesktop] Phone connected event:', phoneConnected)
setIsPhoneConnected(phoneConnected)
setIsReconnecting(false)
setError(null)
reconnectAttemptRef.current = 0
}
const handleDisconnected = ({ phoneConnected }: { phoneConnected: boolean }) => {
console.log('[RemoteCameraDesktop] Phone disconnected event:', phoneConnected)
setIsPhoneConnected(phoneConnected)
setLatestFrame(null)
setFrameRate(0)
// Don't clear frame/framerate - keep last state for visual continuity
// Phone might reconnect quickly
}
const handleStatus = ({ phoneConnected }: { phoneConnected: boolean }) => {
console.log('[RemoteCameraDesktop] Status event:', phoneConnected)
setIsPhoneConnected(phoneConnected)
setIsReconnecting(false)
reconnectAttemptRef.current = 0
}
const handleFrame = (frame: RemoteCameraFrame) => {
@@ -125,7 +198,27 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
}
const handleError = ({ error: errorMsg }: { error: string }) => {
console.log('[RemoteCameraDesktop] Error event:', errorMsg)
// If session is invalid/expired, clear the persisted session
if (errorMsg.includes('Invalid') || errorMsg.includes('expired')) {
console.log('[RemoteCameraDesktop] Session invalid, clearing persisted session')
persistSessionId(null)
setCurrentSessionId(null)
currentSessionIdRef.current = null
}
setError(errorMsg)
setIsReconnecting(false)
}
const handleTorchState = ({
isTorchOn: torchOn,
isTorchAvailable: torchAvailable,
}: {
isTorchOn: boolean
isTorchAvailable: boolean
}) => {
setIsTorchOn(torchOn)
setIsTorchAvailable(torchAvailable)
}
socket.on('remote-camera:connected', handleConnected)
@@ -133,6 +226,7 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
socket.on('remote-camera:status', handleStatus)
socket.on('remote-camera:frame', handleFrame)
socket.on('remote-camera:error', handleError)
socket.on('remote-camera:torch-state', handleTorchState)
return () => {
socket.off('remote-camera:connected', handleConnected)
@@ -140,8 +234,9 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
socket.off('remote-camera:status', handleStatus)
socket.off('remote-camera:frame', handleFrame)
socket.off('remote-camera:error', handleError)
socket.off('remote-camera:torch-state', handleTorchState)
}
}, [socket, calculateFrameRate])
}, [socket, calculateFrameRate, persistSessionId])
// Frame rate update interval
useEffect(() => {
@@ -151,31 +246,73 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
const subscribe = useCallback(
(sessionId: string) => {
console.log(
'[RemoteCameraDesktop] Subscribing to session:',
sessionId,
'socket:',
!!socket,
'connected:',
isConnected
)
if (!socket || !isConnected) {
console.error('[RemoteCameraDesktop] Socket not connected!')
setError('Socket not connected')
return
}
currentSessionId.current = sessionId
currentSessionIdRef.current = sessionId
setCurrentSessionId(sessionId)
persistSessionId(sessionId)
setError(null)
console.log('[RemoteCameraDesktop] Emitting remote-camera:subscribe')
socket.emit('remote-camera:subscribe', { sessionId })
},
[socket, isConnected]
[socket, isConnected, persistSessionId]
)
const unsubscribe = useCallback(() => {
if (!socket || !currentSessionId.current) return
if (!socket || !currentSessionIdRef.current) return
socket.emit('remote-camera:leave', { sessionId: currentSessionId.current })
currentSessionId.current = null
socket.emit('remote-camera:leave', {
sessionId: currentSessionIdRef.current,
})
currentSessionIdRef.current = null
setCurrentSessionId(null)
// Don't clear persisted session - unsubscribe is for temporary disconnect
setIsPhoneConnected(false)
setLatestFrame(null)
setFrameRate(0)
setError(null)
setVideoDimensions(null)
setFrameMode('raw')
setIsTorchOn(false)
setIsTorchAvailable(false)
}, [socket])
/**
* Clear session completely (forget persisted session)
* Use when user explicitly wants to start fresh
*/
const clearSession = useCallback(() => {
if (socket && currentSessionIdRef.current) {
socket.emit('remote-camera:leave', {
sessionId: currentSessionIdRef.current,
})
}
currentSessionIdRef.current = null
setCurrentSessionId(null)
persistSessionId(null)
setIsPhoneConnected(false)
setLatestFrame(null)
setFrameRate(0)
setError(null)
setVideoDimensions(null)
setFrameMode('raw')
setIsTorchOn(false)
setIsTorchAvailable(false)
setIsReconnecting(false)
}, [socket, persistSessionId])
/**
* Set the phone's frame mode
* - raw: Phone sends uncropped frames (for calibration)
@@ -183,10 +320,10 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
*/
const setPhoneFrameMode = useCallback(
(mode: FrameMode) => {
if (!socket || !currentSessionId.current) return
if (!socket || !currentSessionIdRef.current) return
socket.emit('remote-camera:set-mode', {
sessionId: currentSessionId.current,
sessionId: currentSessionIdRef.current,
mode,
})
setFrameMode(mode)
@@ -200,10 +337,10 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
*/
const sendCalibration = useCallback(
(corners: QuadCorners) => {
if (!socket || !currentSessionId.current) return
if (!socket || !currentSessionIdRef.current) return
socket.emit('remote-camera:set-calibration', {
sessionId: currentSessionId.current,
sessionId: currentSessionIdRef.current,
corners,
})
// Phone will automatically switch to cropped mode when it receives calibration
@@ -212,12 +349,41 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
[socket]
)
/**
* Clear desktop calibration on phone
* This tells the phone to forget the desktop calibration and go back to auto-detection
*/
const clearCalibration = useCallback(() => {
if (!socket || !currentSessionIdRef.current) return
socket.emit('remote-camera:clear-calibration', {
sessionId: currentSessionIdRef.current,
})
}, [socket])
/**
* Set phone's torch state
*/
const setRemoteTorch = useCallback(
(on: boolean) => {
if (!socket || !currentSessionIdRef.current) return
socket.emit('remote-camera:set-torch', {
sessionId: currentSessionIdRef.current,
on,
})
// Optimistically update local state
setIsTorchOn(on)
},
[socket]
)
// Cleanup on unmount
useEffect(() => {
return () => {
if (socket && currentSessionId.current) {
if (socket && currentSessionIdRef.current) {
socket.emit('remote-camera:leave', {
sessionId: currentSessionId.current,
sessionId: currentSessionIdRef.current,
})
}
}
@@ -229,10 +395,18 @@ export function useRemoteCameraDesktop(): UseRemoteCameraDesktopReturn {
frameRate,
frameMode,
videoDimensions,
isTorchOn,
isTorchAvailable,
error,
currentSessionId,
isReconnecting,
subscribe,
unsubscribe,
setPhoneFrameMode,
sendCalibration,
clearCalibration,
setRemoteTorch,
getPersistedSessionId,
clearSession,
}
}

View File

@@ -17,12 +17,20 @@ interface UseRemoteCameraPhoneOptions {
targetFps?: number
/** JPEG quality (0-1, default 0.8) */
jpegQuality?: number
/** Target width for cropped image (default 400) */
/** Target width for cropped image (default 300) */
targetWidth?: number
/** Target width for raw frames (default 640) */
rawWidth?: number
/** Callback when desktop requests torch change */
onTorchRequest?: (on: boolean) => void
}
/**
* Fixed aspect ratio for cropped abacus images.
* Abacus is 4 units high by 3 units wide, giving a 4:3 height:width ratio.
*/
const ABACUS_ASPECT_RATIO = 4 / 3
interface UseRemoteCameraPhoneReturn {
/** Whether connected to the session */
isConnected: boolean
@@ -46,6 +54,8 @@ interface UseRemoteCameraPhoneReturn {
updateCalibration: (calibration: QuadCorners) => void
/** Set frame mode locally */
setFrameMode: (mode: FrameMode) => void
/** Emit torch state to desktop */
emitTorchState: (isTorchOn: boolean, isTorchAvailable: boolean) => void
}
/**
@@ -58,7 +68,22 @@ interface UseRemoteCameraPhoneReturn {
export function useRemoteCameraPhone(
options: UseRemoteCameraPhoneOptions = {}
): UseRemoteCameraPhoneReturn {
const { targetFps = 10, jpegQuality = 0.8, targetWidth = 400, rawWidth = 640 } = options
const {
targetFps = 10,
jpegQuality = 0.8,
targetWidth = 300,
rawWidth = 640,
onTorchRequest,
} = options
// Keep onTorchRequest in a ref to avoid stale closures
const onTorchRequestRef = useRef(onTorchRequest)
useEffect(() => {
onTorchRequestRef.current = onTorchRequest
}, [onTorchRequest])
// Calculate fixed output height based on aspect ratio (4 units tall by 3 units wide)
const targetHeight = Math.round(targetWidth * ABACUS_ASPECT_RATIO)
const [isSocketConnected, setIsSocketConnected] = useState(false)
const [isConnected, setIsConnected] = useState(false)
@@ -93,21 +118,48 @@ export function useRemoteCameraPhone(
frameModeRef.current = frameMode
}, [frameMode])
// Initialize socket connection
// Initialize socket connection with reconnection support
useEffect(() => {
console.log('[RemoteCameraPhone] Initializing socket connection...')
const socketInstance = io({
path: '/api/socket',
autoConnect: true,
reconnection: true,
reconnectionDelay: 1000,
reconnectionDelayMax: 5000,
reconnectionAttempts: 10,
})
socketInstance.on('connect', () => {
console.log('[RemoteCameraPhone] Socket connected! ID:', socketInstance.id)
setIsSocketConnected(true)
// Auto-reconnect to session if we have one
const sessionId = sessionIdRef.current
if (sessionId) {
console.log(
'[RemoteCameraPhone] Auto-reconnecting to session after socket reconnect:',
sessionId
)
socketInstance.emit('remote-camera:join', { sessionId })
setIsConnected(true)
isConnectedRef.current = true
}
})
socketInstance.on('disconnect', () => {
socketInstance.on('connect_error', (error) => {
console.error('[RemoteCameraPhone] Socket connect error:', error)
})
socketInstance.on('disconnect', (reason) => {
console.log('[RemoteCameraPhone] Socket disconnected:', reason)
setIsSocketConnected(false)
setIsConnected(false)
isConnectedRef.current = false
// Don't clear isConnected or sessionIdRef - we want to auto-reconnect
// Only clear if server explicitly disconnected us
if (reason === 'io server disconnect') {
setIsConnected(false)
isConnectedRef.current = false
}
})
socketRef.current = socketInstance
@@ -157,20 +209,39 @@ export function useRemoteCameraPhone(
frameModeRef.current = 'cropped'
}
// Handle clear calibration from desktop (go back to auto-detection)
const handleClearCalibration = () => {
console.log('[RemoteCameraPhone] Desktop cleared calibration - returning to auto-detection')
setDesktopCalibration(null)
calibrationRef.current = null
}
// Handle torch command from desktop
const handleSetTorch = ({ on }: { on: boolean }) => {
console.log('[RemoteCameraPhone] Desktop requested torch:', on)
onTorchRequestRef.current?.(on)
}
socket.on('remote-camera:error', handleError)
socket.on('remote-camera:set-mode', handleSetMode)
socket.on('remote-camera:set-calibration', handleSetCalibration)
socket.on('remote-camera:clear-calibration', handleClearCalibration)
socket.on('remote-camera:set-torch', handleSetTorch)
return () => {
socket.off('remote-camera:error', handleError)
socket.off('remote-camera:set-mode', handleSetMode)
socket.off('remote-camera:set-calibration', handleSetCalibration)
socket.off('remote-camera:clear-calibration', handleClearCalibration)
socket.off('remote-camera:set-torch', handleSetTorch)
}
}, [isSocketConnected]) // Re-run when socket connects
/**
* Apply perspective transform and extract the quadrilateral region
* Uses OpenCV for proper perspective correction
*
* Output is fixed at 4:3 height:width aspect ratio (abacus is 4 units tall by 3 units wide)
*/
const cropToQuad = useCallback(
(video: HTMLVideoElement, quad: QuadCorners): string | null => {
@@ -181,11 +252,12 @@ export function useRemoteCameraPhone(
return rectifyQuadrilateralToBase64(video, quad, {
outputWidth: targetWidth,
outputHeight: targetHeight, // Fixed 4:3 aspect ratio
jpegQuality,
rotate180: false, // Phone camera: no rotation needed, direct mapping
})
},
[targetWidth, jpegQuality]
[targetWidth, targetHeight, jpegQuality]
)
/**
@@ -274,7 +346,16 @@ export function useRemoteCameraPhone(
const connect = useCallback(
(sessionId: string) => {
const socket = socketRef.current
console.log(
'[RemoteCameraPhone] Connecting to session:',
sessionId,
'socket:',
!!socket,
'connected:',
isSocketConnected
)
if (!socket || !isSocketConnected) {
console.error('[RemoteCameraPhone] Socket not connected!')
setError('Socket not connected')
return
}
@@ -282,6 +363,7 @@ export function useRemoteCameraPhone(
sessionIdRef.current = sessionId
setError(null)
console.log('[RemoteCameraPhone] Emitting remote-camera:join')
socket.emit('remote-camera:join', { sessionId })
setIsConnected(true)
isConnectedRef.current = true
@@ -344,6 +426,21 @@ export function useRemoteCameraPhone(
calibrationRef.current = calibration
}, [])
/**
* Emit torch state to desktop
*/
const emitTorchState = useCallback((isTorchOn: boolean, isTorchAvailable: boolean) => {
const socket = socketRef.current
const sessionId = sessionIdRef.current
if (!socket || !sessionId) return
socket.emit('remote-camera:torch-state', {
sessionId,
isTorchOn,
isTorchAvailable,
})
}, [])
// Cleanup on unmount
useEffect(() => {
return () => {
@@ -369,5 +466,6 @@ export function useRemoteCameraPhone(
stopSending,
updateCalibration,
setFrameMode,
emitTorchState,
}
}

View File

@@ -17,6 +17,8 @@ interface UseRemoteCameraSessionReturn {
error: string | null
/** Create a new remote camera session */
createSession: () => Promise<RemoteCameraSession | null>
/** Set an existing session ID (for reconnection scenarios) */
setExistingSession: (sessionId: string) => void
/** Clear the current session */
clearSession: () => void
/** Get the URL for the phone to scan */
@@ -67,6 +69,17 @@ export function useRemoteCameraSession(): UseRemoteCameraSessionReturn {
}
}, [])
const setExistingSession = useCallback((sessionId: string) => {
// Use existing session ID without creating a new one on the server
// This is used for reconnection when the phone reloads
setSession({
sessionId,
expiresAt: new Date(Date.now() + 10 * 60 * 1000).toISOString(), // Assume 10 min remaining
phoneConnected: false,
})
setError(null)
}, [])
const clearSession = useCallback(() => {
setSession(null)
setError(null)
@@ -112,6 +125,7 @@ export function useRemoteCameraSession(): UseRemoteCameraSessionReturn {
isCreating,
error,
createSession,
setExistingSession,
clearSession,
getPhoneUrl,
}

View File

@@ -11,6 +11,7 @@ import type {
PracticeStateEvent,
SessionPausedEvent,
SessionResumedEvent,
VisionFrameEvent,
} from '@/lib/classroom/socket-events'
/**
@@ -64,6 +65,8 @@ export interface UseSessionBroadcastResult {
) => void
/** Send part transition complete event to observers */
sendPartTransitionComplete: () => void
/** Send vision frame to observers (when student has vision mode enabled) */
sendVisionFrame: (imageData: string, detectedValue: number | null, confidence: number) => void
}
export function useSessionBroadcast(
@@ -271,10 +274,31 @@ export function useSessionBroadcast(
console.log('[SessionBroadcast] Emitted part-transition-complete')
}, [sessionId])
// Broadcast vision frame to observers
const sendVisionFrame = useCallback(
(imageData: string, detectedValue: number | null, confidence: number) => {
if (!socketRef.current || !isConnectedRef.current || !sessionId) {
return
}
const event: VisionFrameEvent = {
sessionId,
imageData,
detectedValue,
confidence,
timestamp: Date.now(),
}
socketRef.current.emit('vision-frame', event)
},
[sessionId]
)
return {
isConnected: isConnectedRef.current,
isBroadcasting: isConnectedRef.current && !!state,
sendPartTransition,
sendPartTransitionComplete,
sendVisionFrame,
}
}

View File

@@ -10,6 +10,7 @@ import type {
PracticeStateEvent,
SessionPausedEvent,
SessionResumedEvent,
VisionFrameEvent,
} from '@/lib/classroom/socket-events'
/**
@@ -110,6 +111,20 @@ export interface ObservedResult {
recordedAt: number
}
/**
* Vision frame received from student's abacus camera
*/
export interface ObservedVisionFrame {
/** Base64-encoded JPEG image data */
imageData: string
/** Detected abacus value (null if not yet detected) */
detectedValue: number | null
/** Detection confidence (0-1) */
confidence: number
/** When this frame was received by observer */
receivedAt: number
}
interface UseSessionObserverResult {
/** Current observed state (null if not yet received) */
state: ObservedSessionState | null
@@ -117,6 +132,8 @@ interface UseSessionObserverResult {
results: ObservedResult[]
/** Current part transition state (null if not in transition) */
transitionState: ObservedTransitionState | null
/** Latest vision frame from student's camera (null if vision not enabled) */
visionFrame: ObservedVisionFrame | null
/** Whether connected to the session channel */
isConnected: boolean
/** Whether actively observing (connected and joined session) */
@@ -155,6 +172,7 @@ export function useSessionObserver(
const [state, setState] = useState<ObservedSessionState | null>(null)
const [results, setResults] = useState<ObservedResult[]>([])
const [transitionState, setTransitionState] = useState<ObservedTransitionState | null>(null)
const [visionFrame, setVisionFrame] = useState<ObservedVisionFrame | null>(null)
const [isConnected, setIsConnected] = useState(false)
const [isObserving, setIsObserving] = useState(false)
const [error, setError] = useState<string | null>(null)
@@ -174,6 +192,8 @@ export function useSessionObserver(
setIsObserving(false)
setState(null)
setResults([])
setTransitionState(null)
setVisionFrame(null)
recordedProblemsRef.current.clear()
hasSeededHistoryRef.current = false
}
@@ -354,6 +374,16 @@ export function useSessionObserver(
setTransitionState(null)
})
// Listen for vision frames from student's camera
socket.on('vision-frame', (data: VisionFrameEvent) => {
setVisionFrame({
imageData: data.imageData,
detectedValue: data.detectedValue,
confidence: data.confidence,
receivedAt: Date.now(),
})
})
// Listen for session ended event
socket.on('session-ended', () => {
console.log('[SessionObserver] Session ended')
@@ -445,6 +475,7 @@ export function useSessionObserver(
state,
results,
transitionState,
visionFrame,
isConnected,
isObserving,
error,

View File

@@ -268,6 +268,22 @@ export interface PartTransitionCompleteEvent {
sessionId: string
}
/**
* Vision frame from student's abacus camera.
* Sent when student has vision mode enabled during practice.
*/
export interface VisionFrameEvent {
sessionId: string
/** Base64-encoded JPEG image data */
imageData: string
/** Detected abacus value (null if not yet detected) */
detectedValue: number | null
/** Detection confidence (0-1) */
confidence: number
/** Timestamp when frame was captured */
timestamp: number
}
/**
* Sent when a student starts a practice session while present in a classroom.
* Allows teacher to see session status update in real-time.
@@ -401,6 +417,7 @@ export interface ClassroomServerToClientEvents {
'session-resumed': (data: SessionResumedEvent) => void
'part-transition': (data: PartTransitionEvent) => void
'part-transition-complete': (data: PartTransitionCompleteEvent) => void
'vision-frame': (data: VisionFrameEvent) => void
// Session status events (classroom channel - for teacher's active sessions view)
'session-started': (data: SessionStartedEvent) => void
@@ -427,6 +444,7 @@ export interface ClassroomClientToServerEvents {
// Session state broadcasts (from student client)
'practice-state': (data: PracticeStateEvent) => void
'tutorial-state': (data: TutorialStateEvent) => void
'vision-frame': (data: VisionFrameEvent) => void
// Observer controls
'tutorial-control': (data: TutorialControlEvent) => void

View File

@@ -0,0 +1,328 @@
/**
* @vitest-environment node
*
* Tests for Remote Camera Session Manager
*
* Tests session creation, TTL management, activity-based renewal,
* and calibration persistence.
*/
import { afterEach, beforeEach, describe, expect, it, vi } from 'vitest'
import {
createRemoteCameraSession,
deleteRemoteCameraSession,
getOrCreateSession,
getRemoteCameraSession,
getSessionCalibration,
getSessionCount,
markPhoneConnected,
markPhoneDisconnected,
renewSessionTTL,
setSessionCalibration,
} from '../session-manager'
describe('Remote Camera Session Manager', () => {
beforeEach(() => {
// Clear all sessions before each test
// Access the global sessions map directly
if (globalThis.__remoteCameraSessions) {
globalThis.__remoteCameraSessions.clear()
}
})
afterEach(() => {
vi.restoreAllMocks()
})
describe('createRemoteCameraSession', () => {
it('should create a new session with unique ID', () => {
const session = createRemoteCameraSession()
expect(session.id).toBeDefined()
expect(session.id.length).toBeGreaterThan(0)
expect(session.phoneConnected).toBe(false)
})
it('should set correct timestamps on creation', () => {
const now = new Date()
vi.setSystemTime(now)
const session = createRemoteCameraSession()
expect(session.createdAt.getTime()).toBe(now.getTime())
expect(session.lastActivityAt.getTime()).toBe(now.getTime())
// TTL should be 60 minutes
expect(session.expiresAt.getTime()).toBe(now.getTime() + 60 * 60 * 1000)
})
it('should create multiple sessions with unique IDs', () => {
const session1 = createRemoteCameraSession()
const session2 = createRemoteCameraSession()
expect(session1.id).not.toBe(session2.id)
expect(getSessionCount()).toBe(2)
})
})
describe('getRemoteCameraSession', () => {
it('should retrieve an existing session', () => {
const created = createRemoteCameraSession()
const retrieved = getRemoteCameraSession(created.id)
expect(retrieved).not.toBeNull()
expect(retrieved?.id).toBe(created.id)
})
it('should return null for non-existent session', () => {
const session = getRemoteCameraSession('non-existent-id')
expect(session).toBeNull()
})
it('should return null for expired session', () => {
const session = createRemoteCameraSession()
const sessionId = session.id
// Advance time past expiration (61 minutes)
vi.setSystemTime(new Date(Date.now() + 61 * 60 * 1000))
const retrieved = getRemoteCameraSession(sessionId)
expect(retrieved).toBeNull()
})
})
describe('getOrCreateSession', () => {
it('should create new session with provided ID if not exists', () => {
const customId = 'my-custom-session-id'
const session = getOrCreateSession(customId)
expect(session.id).toBe(customId)
expect(session.phoneConnected).toBe(false)
})
it('should return existing session if not expired', () => {
const customId = 'existing-session'
const original = getOrCreateSession(customId)
// Mark phone connected to verify we get same session
markPhoneConnected(customId)
const retrieved = getOrCreateSession(customId)
expect(retrieved.id).toBe(original.id)
expect(retrieved.phoneConnected).toBe(true)
})
it('should renew TTL when accessing existing session', () => {
const now = new Date()
vi.setSystemTime(now)
const customId = 'session-to-renew'
const original = getOrCreateSession(customId)
const originalExpiry = original.expiresAt.getTime()
// Advance time by 30 minutes
vi.setSystemTime(new Date(now.getTime() + 30 * 60 * 1000))
const retrieved = getOrCreateSession(customId)
// Expiry should be extended from current time
expect(retrieved.expiresAt.getTime()).toBeGreaterThan(originalExpiry)
})
it('should create new session if existing one expired', () => {
const customId = 'expired-session'
const original = getOrCreateSession(customId)
markPhoneConnected(customId) // Mark to distinguish
// Advance time past expiration
vi.setSystemTime(new Date(Date.now() + 61 * 60 * 1000))
const newSession = getOrCreateSession(customId)
// Should be a fresh session (not phone connected)
expect(newSession.id).toBe(customId)
expect(newSession.phoneConnected).toBe(false)
})
})
describe('renewSessionTTL', () => {
it('should extend session expiration time', () => {
const now = new Date()
vi.setSystemTime(now)
const session = createRemoteCameraSession()
const originalExpiry = session.expiresAt.getTime()
// Advance time by 30 minutes
vi.setSystemTime(new Date(now.getTime() + 30 * 60 * 1000))
const renewed = renewSessionTTL(session.id)
expect(renewed).toBe(true)
const updatedSession = getRemoteCameraSession(session.id)
expect(updatedSession?.expiresAt.getTime()).toBeGreaterThan(originalExpiry)
})
it('should update lastActivityAt', () => {
const now = new Date()
vi.setSystemTime(now)
const session = createRemoteCameraSession()
// Advance time
const later = new Date(now.getTime() + 10 * 60 * 1000)
vi.setSystemTime(later)
renewSessionTTL(session.id)
const updatedSession = getRemoteCameraSession(session.id)
expect(updatedSession?.lastActivityAt.getTime()).toBe(later.getTime())
})
it('should return false for non-existent session', () => {
const result = renewSessionTTL('non-existent')
expect(result).toBe(false)
})
})
describe('calibration persistence', () => {
const testCalibration = {
corners: {
topLeft: { x: 10, y: 10 },
topRight: { x: 100, y: 10 },
bottomLeft: { x: 10, y: 100 },
bottomRight: { x: 100, y: 100 },
},
}
it('should store calibration data', () => {
const session = createRemoteCameraSession()
const result = setSessionCalibration(session.id, testCalibration)
expect(result).toBe(true)
})
it('should retrieve calibration data', () => {
const session = createRemoteCameraSession()
setSessionCalibration(session.id, testCalibration)
const retrieved = getSessionCalibration(session.id)
expect(retrieved).toEqual(testCalibration)
})
it('should return null for session without calibration', () => {
const session = createRemoteCameraSession()
const calibration = getSessionCalibration(session.id)
expect(calibration).toBeNull()
})
it('should return null for non-existent session', () => {
const calibration = getSessionCalibration('non-existent')
expect(calibration).toBeNull()
})
it('should renew TTL when setting calibration', () => {
const now = new Date()
vi.setSystemTime(now)
const session = createRemoteCameraSession()
const originalExpiry = session.expiresAt.getTime()
// Advance time
vi.setSystemTime(new Date(now.getTime() + 30 * 60 * 1000))
setSessionCalibration(session.id, testCalibration)
const updatedSession = getRemoteCameraSession(session.id)
expect(updatedSession?.expiresAt.getTime()).toBeGreaterThan(originalExpiry)
})
it('should persist calibration across session retrievals', () => {
const customId = 'calibrated-session'
const session = getOrCreateSession(customId)
setSessionCalibration(session.id, testCalibration)
// Simulate reconnection by getting session again
const reconnected = getOrCreateSession(customId)
expect(reconnected.calibration).toEqual(testCalibration)
})
})
describe('phone connection state', () => {
it('should mark phone as connected', () => {
const session = createRemoteCameraSession()
const result = markPhoneConnected(session.id)
expect(result).toBe(true)
const updated = getRemoteCameraSession(session.id)
expect(updated?.phoneConnected).toBe(true)
})
it('should mark phone as disconnected', () => {
const session = createRemoteCameraSession()
markPhoneConnected(session.id)
const result = markPhoneDisconnected(session.id)
expect(result).toBe(true)
const updated = getRemoteCameraSession(session.id)
expect(updated?.phoneConnected).toBe(false)
})
it('should extend TTL when phone connects', () => {
const now = new Date()
vi.setSystemTime(now)
const session = createRemoteCameraSession()
// Advance time
vi.setSystemTime(new Date(now.getTime() + 30 * 60 * 1000))
markPhoneConnected(session.id)
const updated = getRemoteCameraSession(session.id)
// Expiry should be 60 mins from now (not from creation)
expect(updated?.expiresAt.getTime()).toBeGreaterThan(now.getTime() + 60 * 60 * 1000)
})
it('should return false for non-existent session', () => {
expect(markPhoneConnected('non-existent')).toBe(false)
expect(markPhoneDisconnected('non-existent')).toBe(false)
})
})
describe('deleteRemoteCameraSession', () => {
it('should delete existing session', () => {
const session = createRemoteCameraSession()
const result = deleteRemoteCameraSession(session.id)
expect(result).toBe(true)
expect(getRemoteCameraSession(session.id)).toBeNull()
})
it('should return false for non-existent session', () => {
const result = deleteRemoteCameraSession('non-existent')
expect(result).toBe(false)
})
})
describe('session count', () => {
it('should track total sessions', () => {
expect(getSessionCount()).toBe(0)
createRemoteCameraSession()
expect(getSessionCount()).toBe(1)
createRemoteCameraSession()
expect(getSessionCount()).toBe(2)
})
})
})

View File

@@ -2,7 +2,8 @@
* Remote Camera Session Manager
*
* Manages in-memory sessions for phone-to-desktop camera streaming.
* Sessions are short-lived (10 minute TTL) and stored in memory.
* Sessions have a 60-minute TTL but are renewed on activity.
* Sessions persist across page reloads via session ID stored client-side.
*/
import { createId } from '@paralleldrive/cuid2'
@@ -11,7 +12,17 @@ export interface RemoteCameraSession {
id: string
createdAt: Date
expiresAt: Date
lastActivityAt: Date
phoneConnected: boolean
/** Calibration data sent from desktop (persists for reconnects) */
calibration?: {
corners: {
topLeft: { x: number; y: number }
topRight: { x: number; y: number }
bottomLeft: { x: number; y: number }
bottomRight: { x: number; y: number }
}
}
}
// In-memory session storage
@@ -21,7 +32,7 @@ declare global {
var __remoteCameraSessions: Map<string, RemoteCameraSession> | undefined
}
const SESSION_TTL_MS = 10 * 60 * 1000 // 10 minutes
const SESSION_TTL_MS = 60 * 60 * 1000 // 60 minutes
const CLEANUP_INTERVAL_MS = 60 * 1000 // 1 minute
function getSessions(): Map<string, RemoteCameraSession> {
@@ -44,6 +55,7 @@ export function createRemoteCameraSession(): RemoteCameraSession {
id: createId(),
createdAt: now,
expiresAt: new Date(now.getTime() + SESSION_TTL_MS),
lastActivityAt: now,
phoneConnected: false,
}
@@ -51,6 +63,84 @@ export function createRemoteCameraSession(): RemoteCameraSession {
return session
}
/**
* Get or create a session by ID
* If the session exists and isn't expired, returns it (renewed)
* If the session doesn't exist, creates a new one with the given ID
*/
export function getOrCreateSession(sessionId: string): RemoteCameraSession {
const sessions = getSessions()
const existing = sessions.get(sessionId)
const now = new Date()
if (existing && now <= existing.expiresAt) {
// Renew TTL on access
existing.expiresAt = new Date(now.getTime() + SESSION_TTL_MS)
existing.lastActivityAt = now
return existing
}
// Create new session with provided ID
const session: RemoteCameraSession = {
id: sessionId,
createdAt: now,
expiresAt: new Date(now.getTime() + SESSION_TTL_MS),
lastActivityAt: now,
phoneConnected: false,
}
sessions.set(session.id, session)
return session
}
/**
* Renew session TTL (call on activity to keep session alive)
*/
export function renewSessionTTL(sessionId: string): boolean {
const sessions = getSessions()
const session = sessions.get(sessionId)
if (!session) return false
const now = new Date()
session.expiresAt = new Date(now.getTime() + SESSION_TTL_MS)
session.lastActivityAt = now
return true
}
/**
* Store calibration data in session (persists for reconnects)
*/
export function setSessionCalibration(
sessionId: string,
calibration: RemoteCameraSession['calibration']
): boolean {
const sessions = getSessions()
const session = sessions.get(sessionId)
if (!session) return false
session.calibration = calibration
// Also renew TTL
const now = new Date()
session.expiresAt = new Date(now.getTime() + SESSION_TTL_MS)
session.lastActivityAt = now
return true
}
/**
* Get calibration data from session
*/
export function getSessionCalibration(
sessionId: string
): RemoteCameraSession['calibration'] | null {
const sessions = getSessions()
const session = sessions.get(sessionId)
if (!session) return null
return session.calibration || null
}
/**
* Get a session by ID
*/

View File

@@ -0,0 +1,203 @@
/**
* Traditional CV-based bead detection for abacus columns
*
* Uses edge detection and contour analysis instead of ML.
* Works by detecting the reckoning bar and analyzing bead positions
* relative to it.
*/
export interface BeadAnalysis {
/** Detected digit value (0-9) */
digit: number
/** Confidence based on detection clarity */
confidence: number
/** Position of reckoning bar (0-1, relative to column height) */
reckoningBarPosition: number
/** Number of beads detected above bar */
heavenBeadsDetected: number
/** Whether heaven bead is active (touching bar) */
heavenActive: boolean
/** Number of beads detected below bar */
earthBeadsDetected: number
/** Number of active earth beads (touching bar) */
earthActiveCount: number
}
/**
* Analyze a single column image to detect bead positions
*
* @param imageData - Grayscale image data of a single column
* @returns Analysis result with detected digit
*/
export function analyzeColumn(imageData: ImageData): BeadAnalysis {
const { width, height, data } = imageData
// Step 1: Create vertical intensity profile (average each row)
const rowIntensities = new Float32Array(height)
for (let y = 0; y < height; y++) {
let sum = 0
for (let x = 0; x < width; x++) {
const idx = (y * width + x) * 4
sum += data[idx] // Use red channel (grayscale)
}
rowIntensities[y] = sum / width
}
// Step 2: Find reckoning bar (darkest horizontal region)
// The bar is typically a dark horizontal line in the middle third
const searchStart = Math.floor(height * 0.25)
const searchEnd = Math.floor(height * 0.75)
let darkestRow = searchStart
let darkestValue = 255
// Use a sliding window to find the darkest band
const windowSize = Math.max(3, Math.floor(height * 0.03))
for (let y = searchStart; y < searchEnd - windowSize; y++) {
let windowSum = 0
for (let i = 0; i < windowSize; i++) {
windowSum += rowIntensities[y + i]
}
const windowAvg = windowSum / windowSize
if (windowAvg < darkestValue) {
darkestValue = windowAvg
darkestRow = y + Math.floor(windowSize / 2)
}
}
const reckoningBarPosition = darkestRow / height
// Step 3: Analyze heaven section (above bar)
// Find peaks in intensity (beads are darker than background)
const heavenStart = 0
const heavenEnd = darkestRow - windowSize
const heavenPeaks = findPeaks(rowIntensities, heavenStart, heavenEnd, height)
// Heaven bead is active if it's close to the reckoning bar
const heavenActiveThreshold = height * 0.15 // Within 15% of bar
const heavenActive =
heavenPeaks.length > 0 &&
darkestRow - heavenPeaks[heavenPeaks.length - 1] < heavenActiveThreshold
// Step 4: Analyze earth section (below bar)
const earthStart = darkestRow + windowSize
const earthEnd = height
const earthPeaks = findPeaks(rowIntensities, earthStart, earthEnd, height)
// Earth beads are active if they're close to the reckoning bar
const earthActiveCount = earthPeaks.filter(
(peak) => peak - darkestRow < heavenActiveThreshold
).length
// Step 5: Calculate digit value
// Heaven bead = 5, each earth bead = 1
const heavenValue = heavenActive ? 5 : 0
const earthValue = Math.min(earthActiveCount, 4) // Max 4 earth beads
const digit = heavenValue + earthValue
// Step 6: Calculate confidence based on detection quality
// Higher confidence if we found expected number of beads and clear bar
const expectedHeavenBeads = 1
const expectedEarthBeads = 4
const heavenConfidence = heavenPeaks.length === expectedHeavenBeads ? 1.0 : 0.5
const earthConfidence =
earthPeaks.length >= expectedEarthBeads ? 1.0 : earthPeaks.length / expectedEarthBeads
const barContrast = (255 - darkestValue) / 255 // How dark is the bar?
const confidence = (heavenConfidence + earthConfidence + barContrast) / 3
return {
digit,
confidence,
reckoningBarPosition,
heavenBeadsDetected: heavenPeaks.length,
heavenActive,
earthBeadsDetected: earthPeaks.length,
earthActiveCount,
}
}
/**
* Find peaks (local minima = dark beads) in intensity profile
*/
function findPeaks(
intensities: Float32Array,
start: number,
end: number,
totalHeight: number
): number[] {
const peaks: number[] = []
const minPeakDistance = Math.floor(totalHeight * 0.05) // Min 5% height between peaks
const threshold = calculateAdaptiveThreshold(intensities, start, end)
let lastPeak = -minPeakDistance * 2
for (let y = start + 2; y < end - 2; y++) {
const current = intensities[y]
// Local minimum (darker than neighbors)
if (
current < intensities[y - 1] &&
current < intensities[y + 1] &&
current < intensities[y - 2] &&
current < intensities[y + 2] &&
current < threshold &&
y - lastPeak >= minPeakDistance
) {
peaks.push(y)
lastPeak = y
}
}
return peaks
}
/**
* Calculate adaptive threshold for peak detection
*/
function calculateAdaptiveThreshold(intensities: Float32Array, start: number, end: number): number {
let sum = 0
let min = 255
let max = 0
for (let y = start; y < end; y++) {
sum += intensities[y]
min = Math.min(min, intensities[y])
max = Math.max(max, intensities[y])
}
const avg = sum / (end - start)
// Threshold halfway between average and minimum
return (avg + min) / 2
}
/**
* Analyze multiple columns
*/
export function analyzeColumns(columnImages: ImageData[]): BeadAnalysis[] {
return columnImages.map(analyzeColumn)
}
/**
* Convert bead analyses to digits
*/
export function analysesToDigits(analyses: BeadAnalysis[]): {
digits: number[]
confidences: number[]
minConfidence: number
} {
const digits = analyses.map((a) => a.digit)
const confidences = analyses.map((a) => a.confidence)
const minConfidence = confidences.length > 0 ? Math.min(...confidences) : 0
return { digits, confidences, minConfidence }
}
/**
* Convert digits to number
*/
export function digitsToNumber(digits: number[]): number {
if (digits.length === 0) return 0
return digits.reduce((acc, d) => acc * 10 + d, 0)
}

View File

@@ -7,7 +7,7 @@
// TensorFlow.js types (dynamically imported)
type TFLite = typeof import('@tensorflow/tfjs')
type GraphModel = import('@tensorflow/tfjs').GraphModel
type LayersModel = import('@tensorflow/tfjs').LayersModel
// Model configuration
const MODEL_PATH = '/models/abacus-column-classifier/model.json'
@@ -17,8 +17,8 @@ const NUM_CLASSES = 10
// Cached model and TensorFlow instance
let tfInstance: TFLite | null = null
let modelInstance: GraphModel | null = null
let modelLoadPromise: Promise<GraphModel | null> | null = null
let modelInstance: LayersModel | null = null
let modelLoadPromise: Promise<LayersModel | null> | null = null
let modelCheckFailed = false // Track if model doesn't exist
/**
@@ -61,7 +61,7 @@ async function checkModelExists(): Promise<boolean> {
* Lazy load the classification model
* Returns null if model doesn't exist (not yet trained)
*/
async function loadModel(): Promise<GraphModel | null> {
async function loadModel(): Promise<LayersModel | null> {
if (modelInstance) return modelInstance
if (modelCheckFailed) return null
@@ -86,8 +86,8 @@ async function loadModel(): Promise<GraphModel | null> {
const startTime = performance.now()
try {
// Load as GraphModel for optimized inference
const model = await tf.loadGraphModel(MODEL_PATH)
// Load as LayersModel (exported from Keras)
const model = await tf.loadLayersModel(MODEL_PATH)
const loadTime = performance.now() - startTime
console.log(`[ColumnClassifier] Model loaded in ${loadTime.toFixed(0)}ms`)

View File

@@ -214,3 +214,59 @@ export function getMinConfidence(confidences: number[]): number {
if (confidences.length === 0) return 0
return Math.min(...confidences)
}
/**
* Process an image frame for classification (for remote camera frames)
*
* @param image - Image element with the frame
* @param calibration - Calibration grid (if null, assumes entire image is the abacus)
* @param columnCount - Number of columns to slice into
* @param columnWidth - Target column width for model input
* @param columnHeight - Target column height for model input
* @returns Array of preprocessed column ImageData ready for classification
*/
export function processImageFrame(
image: HTMLImageElement,
calibration: CalibrationGrid | null,
columnCount: number,
columnWidth: number = 64,
columnHeight: number = 128
): ImageData[] {
// Create canvas for image frame
const canvas = document.createElement('canvas')
canvas.width = image.naturalWidth || image.width
canvas.height = image.naturalHeight || image.height
const ctx = canvas.getContext('2d')!
// Draw image frame
ctx.drawImage(image, 0, 0)
let roiData: ImageData
if (calibration) {
// Extract ROI using calibration
roiData = extractROI(ctx, calibration.roi)
} else {
// No calibration - use entire image as ROI (already cropped by phone)
roiData = ctx.getImageData(0, 0, canvas.width, canvas.height)
}
// Create a synthetic calibration for slicing if none provided
const sliceCalibration: CalibrationGrid = calibration ?? {
roi: { x: 0, y: 0, width: canvas.width, height: canvas.height },
columnCount,
columnDividers: Array.from({ length: columnCount - 1 }, (_, i) => (i + 1) / columnCount),
rotation: 0,
}
// Slice into columns
const columns = sliceIntoColumns(roiData, sliceCalibration)
// Preprocess each column
return columns.map((col) => {
// Convert to grayscale
const gray = toGrayscale(col)
// Resize to model input size
return resizeImageData(gray, columnWidth, columnHeight)
})
}

View File

@@ -978,6 +978,21 @@ export function initializeSocketServer(httpServer: HTTPServer) {
io!.to(`session:${data.sessionId}`).emit('session-resumed', data)
})
// Session Observation: Broadcast vision frame from student's abacus camera
socket.on(
'vision-frame',
(data: {
sessionId: string
imageData: string
detectedValue: number | null
confidence: number
timestamp: number
}) => {
// Broadcast to all observers in the session channel
socket.to(`session:${data.sessionId}`).emit('vision-frame', data)
}
)
// Skill Tutorial: Broadcast state from student to classroom (for teacher observation)
// The student joins the classroom channel and emits their tutorial state
socket.on(
@@ -1228,6 +1243,43 @@ export function initializeSocketServer(httpServer: HTTPServer) {
}
)
// Remote Camera: Desktop clears calibration (tell phone to go back to auto-detection)
socket.on('remote-camera:clear-calibration', ({ sessionId }: { sessionId: string }) => {
// Forward clear calibration to phone
socket.to(`remote-camera:${sessionId}`).emit('remote-camera:clear-calibration', {})
console.log(`🖥️ Desktop cleared remote camera calibration`)
})
// Remote Camera: Desktop commands phone to toggle torch
socket.on(
'remote-camera:set-torch',
({ sessionId, on }: { sessionId: string; on: boolean }) => {
// Forward torch command to phone
socket.to(`remote-camera:${sessionId}`).emit('remote-camera:set-torch', { on })
console.log(`🖥️ Desktop set remote camera torch: ${on}`)
}
)
// Remote Camera: Phone reports torch state to desktop
socket.on(
'remote-camera:torch-state',
({
sessionId,
isTorchOn,
isTorchAvailable,
}: {
sessionId: string
isTorchOn: boolean
isTorchAvailable: boolean
}) => {
// Forward torch state to desktop
socket.to(`remote-camera:${sessionId}`).emit('remote-camera:torch-state', {
isTorchOn,
isTorchAvailable,
})
}
)
// Remote Camera: Leave session
socket.on('remote-camera:leave', async ({ sessionId }: { sessionId: string }) => {
try {

View File

@@ -1 +1,21 @@
import '@testing-library/jest-dom'
// Mock canvas Image constructor to prevent jsdom errors when rendering
// images with data URIs (e.g., data:image/jpeg;base64,...)
// This works by patching HTMLImageElement.prototype before jsdom uses it
// Guard for node environment where HTMLImageElement doesn't exist
if (typeof HTMLImageElement !== 'undefined') {
const originalSetAttribute = HTMLImageElement.prototype.setAttribute
HTMLImageElement.prototype.setAttribute = function (name: string, value: string) {
if (name === 'src' && value.startsWith('data:image/')) {
// Store the value but don't trigger jsdom's image loading
Object.defineProperty(this, 'src', {
value,
writable: true,
configurable: true,
})
return
}
return originalSetAttribute.call(this, name, value)
}
}

View File

@@ -125,6 +125,9 @@ export interface AbacusVisionState {
selectedDeviceId: string | null
availableDevices: MediaDeviceInfo[]
isDeskViewDetected: boolean
facingMode: 'user' | 'environment'
isTorchOn: boolean
isTorchAvailable: boolean
// Calibration state
calibrationGrid: CalibrationGrid | null
@@ -157,6 +160,10 @@ export interface AbacusVisionActions {
resetCalibration: () => void
/** Set calibration mode (auto uses ArUco markers, manual uses drag handles) */
setCalibrationMode: (mode: CalibrationMode) => void
/** Flip between front and back camera */
flipCamera: () => Promise<void>
/** Toggle torch on/off */
toggleTorch: () => Promise<void>
}
/**
@@ -180,8 +187,8 @@ export interface FrameStabilityConfig {
* Default stability configuration
*/
export const DEFAULT_STABILITY_CONFIG: FrameStabilityConfig = {
minConsecutiveFrames: 10, // ~300ms at 30fps
minConfidence: 0.7,
minConsecutiveFrames: 3, // 600ms at 5fps inference rate
minConfidence: 0.5, // Lower threshold - model confidence is often 60-80%
handMotionThreshold: 0.3,
}

View File

@@ -1,94 +1,118 @@
# [2.18.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.17.0...abacus-react-v2.18.0) (2026-01-01)
# [2.20.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.19.0...abacus-react-v2.20.0) (2026-01-02)
### Bug Fixes
* allow teacher-parents to enroll their children in other classrooms ([52df7f4](https://github.com/antialias/soroban-abacus-flashcards/commit/52df7f469718128fd3d8933941ffb8d4bb8db208))
* **bkt:** handle missing helpLevelUsed in legacy data causing NaN ([b300ed9](https://github.com/antialias/soroban-abacus-flashcards/commit/b300ed9f5cc3bfb0c7b28faafe81c80a59444998))
* **camera:** handle race condition in camera initialization ([2a24700](https://github.com/antialias/soroban-abacus-flashcards/commit/2a24700e6cb6efe0ae35d9ebd6c428e3a1a1a736))
* **classroom:** auto-transition tutorial→session observation + fix NaN display ([962a52d](https://github.com/antialias/soroban-abacus-flashcards/commit/962a52d7562f566e78f6272816b049bf77daa7c9))
* **classroom:** broadcast digit-by-digit answer and correct phase indicator ([fb73e85](https://github.com/antialias/soroban-abacus-flashcards/commit/fb73e85f2daacefafa572e03c16b10fab619ea57))
* **dashboard:** compute skill stats from session results in curriculum API ([11d4846](https://github.com/antialias/soroban-abacus-flashcards/commit/11d48465d710d0293ebf41f64b4fd0f1f03d8bf8))
* **db:** add missing is_paused column to session_plans ([9d8b5e1](https://github.com/antialias/soroban-abacus-flashcards/commit/9d8b5e1148911f881d08d07608debaaef91609c2))
* **db:** add missing journal entries for migrations 0041-0042 ([398603c](https://github.com/antialias/soroban-abacus-flashcards/commit/398603c75a094e28122c5ccdced5b82badc7fbfb))
* **docker:** add canvas native deps for jsdom/vitest ([5f51bc1](https://github.com/antialias/soroban-abacus-flashcards/commit/5f51bc1871aec325feb32a0b29edabb3b6c5dd1f))
* **docker:** override canvas with mock package for Alpine/musl ([8be1995](https://github.com/antialias/soroban-abacus-flashcards/commit/8be19958af624d22fa2c6cb48f5723f5efc820c3))
* **docker:** skip canvas native build (optional jsdom dep) ([d717f44](https://github.com/antialias/soroban-abacus-flashcards/commit/d717f44fccb8ed2baa30499df65784a4b89c6ffc))
* **observer:** seed results panel with full session history ([aab7469](https://github.com/antialias/soroban-abacus-flashcards/commit/aab7469d9ea87c91a0165e4c48a60ac130cdc1b2))
* only show session stats when there are actual problems ([62aefad](https://github.com/antialias/soroban-abacus-flashcards/commit/62aefad6766ba32ad27e8ed3db621a6f77520cbe))
* **practice:** allow teachers to create student profiles ([5fee129](https://github.com/antialias/soroban-abacus-flashcards/commit/5fee1297e1775b5e6133919d179e23b6e70b2518))
* **practice:** always show add student FAB button ([a658414](https://github.com/antialias/soroban-abacus-flashcards/commit/a6584143ebf1f3e5b3c9f3283e690458a06beb60))
* **practice:** real-time progress in observer modal + numeric answer comparison ([c0e63ff](https://github.com/antialias/soroban-abacus-flashcards/commit/c0e63ff68b26fd37eedd657504f7f79e5ce40a10))
* **practice:** show active sessions for teacher's own children ([ece3197](https://github.com/antialias/soroban-abacus-flashcards/commit/ece319738b6ab1882469d79ea24b604316d28b34))
* **practice:** use Next.js Link for student tiles + fix session observer z-index ([6def610](https://github.com/antialias/soroban-abacus-flashcards/commit/6def6108771b427e4885bebd23cecdad7a50efb0))
* **seed:** accurate BKT simulation for developing classifications ([d5e4c85](https://github.com/antialias/soroban-abacus-flashcards/commit/d5e4c858db8866e5177b8fa2317aba42b30171e8))
* **share:** use getShareUrl for correct production URLs ([98a69f1](https://github.com/antialias/soroban-abacus-flashcards/commit/98a69f1f80e465415edce49043e2c019a856f8e5))
* **vision:** fix manual calibration overlay not showing on remote camera ([44dcb01](https://github.com/antialias/soroban-abacus-flashcards/commit/44dcb01473bac00c09dddbbefd77dd26b3a27817))
* **vision:** fix remote camera calibration coordinate system ([e52f94e](https://github.com/antialias/soroban-abacus-flashcards/commit/e52f94e4b476658c41f23668d2941af1288e4ed8))
* **vision:** swap corners diagonally for webcam orientation ([dd8efe3](https://github.com/antialias/soroban-abacus-flashcards/commit/dd8efe379d4bbcfc4b60f7c00ad6180465b7e7b6))
* **vision:** clear config when switching camera sources ([ff59612](https://github.com/antialias/soroban-abacus-flashcards/commit/ff59612e7b9bab3ef4a8fba3c60e9dbcb37a140a))
* **vision:** hide flip camera button when only one camera available ([7a9185e](https://github.com/antialias/soroban-abacus-flashcards/commit/7a9185eadb3609de596e3d150090af19225fdab6))
* **vision:** include remote camera in isVisionSetupComplete check ([a8fb77e](https://github.com/antialias/soroban-abacus-flashcards/commit/a8fb77e8e3f2f4293c2dab99ca1ec1de78b1e37c))
* **vision:** remote camera persistence and UI bugs ([d90d263](https://github.com/antialias/soroban-abacus-flashcards/commit/d90d263b2a2a5f228d93af2217bb11241ee8f0f5))
### Features
* API authorization audit + teacher enrollment UI + share codes ([d6e369f](https://github.com/antialias/soroban-abacus-flashcards/commit/d6e369f9dc9b963938ca8de4562c87f9f1b6d389))
* **camera:** auto-start camera when opening camera modal ([f3bb0ae](https://github.com/antialias/soroban-abacus-flashcards/commit/f3bb0aee4fe23eeffc7b7099981f51ec54636a35))
* **camera:** fullscreen modal with edge-to-edge preview ([db17c96](https://github.com/antialias/soroban-abacus-flashcards/commit/db17c96168078f2d0d723b24395096756a2f63ec))
* **chart:** add grouped structure to chart hover tooltip ([594e22c](https://github.com/antialias/soroban-abacus-flashcards/commit/594e22c428e0a4ee4322c233f127f9250e88b5fa))
* **chart:** improve skill classification visual hierarchy with colors and patterns ([c9518a6](https://github.com/antialias/soroban-abacus-flashcards/commit/c9518a6b9952bda60ab2663d7655092637139fec))
* **classroom:** add active sessions API endpoint ([07f6bb7](https://github.com/antialias/soroban-abacus-flashcards/commit/07f6bb7f9cc2dfbe6da8d16361e89b698405e1c0))
* **classroom:** add real-time enrollment/unenrollment reactivity ([a0693e9](https://github.com/antialias/soroban-abacus-flashcards/commit/a0693e90840f651094f852a6a6f523013786b322))
* **classroom:** add session broadcast and active session indicators ([9636f7f](https://github.com/antialias/soroban-abacus-flashcards/commit/9636f7f44a71da022352c19e80f9ec147dd3af5f))
* **classroom:** add unified add-student modal with two-column layout ([dca696a](https://github.com/antialias/soroban-abacus-flashcards/commit/dca696a29fc20a2697b491c0d2efbe036569a716))
* **classroom:** add unified TeacherClassroomCard with auto-enrollment ([4d6adf3](https://github.com/antialias/soroban-abacus-flashcards/commit/4d6adf359ede5d17c2decd9275ba68635ee0bd4f))
* **classroom:** complete reactivity fixes (Steps 7-11) ([2015494](https://github.com/antialias/soroban-abacus-flashcards/commit/2015494c0eca28457031aa39490d70a2af3da4df))
* **classroom:** consolidate filter pill to single-row design ([78a63e3](https://github.com/antialias/soroban-abacus-flashcards/commit/78a63e35e39948729cbf41e6c5af4e688a506c8d))
* **classroom:** implement enrollment system (Phase 4) ([1952a41](https://github.com/antialias/soroban-abacus-flashcards/commit/1952a412edcd04b332655199737c340a4389d174))
* **classroom:** implement entry prompts system ([de39ab5](https://github.com/antialias/soroban-abacus-flashcards/commit/de39ab52cc60f5782fc291246f98013ae15142ca))
* **classroom:** implement real-time enrollment updates ([bbe0500](https://github.com/antialias/soroban-abacus-flashcards/commit/bbe0500fe9000d0d016417c1b586e9569e3eb888))
* **classroom:** implement real-time presence with WebSocket (Phase 6) ([629bfcf](https://github.com/antialias/soroban-abacus-flashcards/commit/629bfcfc03c611cd3928bb98a67bace485ee3a7b))
* **classroom:** implement real-time session observation (Step 3) ([2feb684](https://github.com/antialias/soroban-abacus-flashcards/commit/2feb6844a4fce48ba7a87d2a77769783c4e8b2f9))
* **classroom:** implement real-time skill tutorial observation ([4b73879](https://github.com/antialias/soroban-abacus-flashcards/commit/4b7387905d2b050327f9b67b834d4e9dfc0b19cb))
* **classroom:** implement teacher classroom dashboard (Phase 3) ([2202716](https://github.com/antialias/soroban-abacus-flashcards/commit/2202716f563053624dbe5c6abb969a3b0d452fd1))
* **classroom:** implement teacher-initiated pause and fix manual pause ([ccea0f8](https://github.com/antialias/soroban-abacus-flashcards/commit/ccea0f86ac213b32cac7363f28e193b1976bd553))
* **classroom:** implement two-way abacus sync for session observation (Step 5) ([2f7002e](https://github.com/antialias/soroban-abacus-flashcards/commit/2f7002e5759db705e213eb9f8474589c8e6149e7))
* **classroom:** improve enrollment reactivity and UX ([77336be](https://github.com/antialias/soroban-abacus-flashcards/commit/77336bea5b5bbf16b393da13588de6e5082e818f))
* **classroom:** integrate create student form into unified add-student modal ([da92289](https://github.com/antialias/soroban-abacus-flashcards/commit/da92289ed1ae570ff48cc28818122d4640d6c84c))
* **classroom:** integrate Enter Classroom into StudentActionMenu ([2f1b9df](https://github.com/antialias/soroban-abacus-flashcards/commit/2f1b9df9d9d605b0c120af6961670ae84718c8d7))
* **dashboard:** add skill progress chart with trend analysis and timing awareness ([1fc8949](https://github.com/antialias/soroban-abacus-flashcards/commit/1fc8949b0664591aa1b0cfcd7c7abd2a4c586281))
* enable parents to observe children's practice sessions ([7b82995](https://github.com/antialias/soroban-abacus-flashcards/commit/7b829956644d369dfdfb0789a33e0b857958e84f))
* **family:** implement parent-to-parent family code sharing (Phase 2) ([0284227](https://github.com/antialias/soroban-abacus-flashcards/commit/02842270c9278174934407a9620777589f79ee1e))
* improve session summary header and add practice type badges ([518fe15](https://github.com/antialias/soroban-abacus-flashcards/commit/518fe153c9fc2ae2f2f7fc0ed4de27ee1c5c5646))
* **observer:** add live active session item to history list ([91d6d6a](https://github.com/antialias/soroban-abacus-flashcards/commit/91d6d6a1b6938b559d8488fe296d562695cf16d1))
* **observer:** add live results panel and session progress indicator ([8527f89](https://github.com/antialias/soroban-abacus-flashcards/commit/8527f892e2b300d51d83056d779474592a2fd955))
* **observer:** implement shareable session observation links ([3ac7b46](https://github.com/antialias/soroban-abacus-flashcards/commit/3ac7b460ec0dc207a5691fbed8d539b484374fe7))
* **practice:** add auto-rotation for captured documents ([ff79a28](https://github.com/antialias/soroban-abacus-flashcards/commit/ff79a28c657fb0a19752990e23f9bb0ced4e9343))
* **practice:** add document adjustment UI and auto-capture ([473b7db](https://github.com/antialias/soroban-abacus-flashcards/commit/473b7dbd7cd15be511351a1fd303a0fc32b9d941))
* **practice:** add document scanning with multi-quad tracking ([5f4f1fd](https://github.com/antialias/soroban-abacus-flashcards/commit/5f4f1fde3372e5d65d3f399216b04ab0e4c9972e))
* **practice:** add fixed filter bar, sticky headers, and shared EmojiPicker ([0e03561](https://github.com/antialias/soroban-abacus-flashcards/commit/0e0356113ddef1ec92cd0b3fda0852d99c6067d2))
* **practice:** add intervention system and improve skill chart hierarchy ([bf5b99a](https://github.com/antialias/soroban-abacus-flashcards/commit/bf5b99afe967c0b17765a7e6f1911d03201eed95))
* **practice:** add mini start practice banner to QuickLook modal ([d1176da](https://github.com/antialias/soroban-abacus-flashcards/commit/d1176da9aa8bd926ca96699d1091e65f4a34d782))
* **practice:** add Needs Attention to unified compact layout ([8727782](https://github.com/antialias/soroban-abacus-flashcards/commit/8727782e45c7ac269c4dbcc223b2a8be57be8bb2))
* **practice:** add photo attachments for practice sessions ([9b85311](https://github.com/antialias/soroban-abacus-flashcards/commit/9b853116ecfbb19bec39923da635374963cf002c))
* **practice:** add photo editing with rotation persistence and auto-detect ([156a0df](https://github.com/antialias/soroban-abacus-flashcards/commit/156a0dfe967a48c211be527da27c92ef8b1ab20c))
* **practice:** add smooth fullscreen transition from QuickLook to dashboard ([cb8b0df](https://github.com/antialias/soroban-abacus-flashcards/commit/cb8b0dff676d48bcba4775c5981ac357d573ab27))
* **practice:** add student organization with filtering and archiving ([538718a](https://github.com/antialias/soroban-abacus-flashcards/commit/538718a814402bd9c83b3c354c5a3386ff69104d))
* **practice:** add StudentActionMenu to dashboard + fix z-index layering ([bf262e7](https://github.com/antialias/soroban-abacus-flashcards/commit/bf262e7d5305e2358d3a2464db10bc3b0866104c))
* **practice:** compact single-student categories and UI improvements ([0e7f326](https://github.com/antialias/soroban-abacus-flashcards/commit/0e7f3265fe2de3b693c47a8a556d3e7cbc726ef4))
* **practice:** implement measurement-based compact layout ([1656b93](https://github.com/antialias/soroban-abacus-flashcards/commit/1656b9324f6fb24a318820e04559c480c99762f5))
* **practice:** implement retry wrong problems system ([474c4da](https://github.com/antialias/soroban-abacus-flashcards/commit/474c4da05a8d761e63a32187f5c301b57fb6aae4))
* **practice:** parent session observation + relationship UI + error boundaries ([07484fd](https://github.com/antialias/soroban-abacus-flashcards/commit/07484fdfac3c6613a6a7709bdee25e1f8e047227))
* **practice:** polish unified student list with keyboard nav and mobile UX ([0ba1551](https://github.com/antialias/soroban-abacus-flashcards/commit/0ba1551feaa30d8f41ec5d771c00561396b043f3))
* **seed:** add category field to all mock student profiles ([f883fbf](https://github.com/antialias/soroban-abacus-flashcards/commit/f883fbfe233b7fb3d366062e7c156e3fc8e0e3a7))
* **session-summary:** redesign ProblemToReview with BKT integration and animations ([430c46a](https://github.com/antialias/soroban-abacus-flashcards/commit/430c46adb929a6c0ce7c67da4b1df7d3e2846cfd))
* **storybook:** add TeacherClassroomCard stories ([a5e5788](https://github.com/antialias/soroban-abacus-flashcards/commit/a5e5788fa96f57e0d918620e357f7920ef792b19))
* **vision:** add AbacusVisionBridge for physical soroban detection ([47088e4](https://github.com/antialias/soroban-abacus-flashcards/commit/47088e4850c25e76fe49879587227b46f699ba91))
* **vision:** add ArUco marker auto-calibration for abacus detection ([9e9a06f](https://github.com/antialias/soroban-abacus-flashcards/commit/9e9a06f2e4dc37d208ac19259be9b9830c7ad949))
* **vision:** add remote phone camera support for abacus detection ([8e4975d](https://github.com/antialias/soroban-abacus-flashcards/commit/8e4975d395c4b10bc40ae2c71473fdb1a50c114c))
* **vision:** add activeCameraSource tracking and simplify calibration UI ([1be6151](https://github.com/antialias/soroban-abacus-flashcards/commit/1be6151bae0f2ffc0781792bf002cb7672635842))
* **vision:** add CV-based bead detection and fix remote camera connection ([005140a](https://github.com/antialias/soroban-abacus-flashcards/commit/005140a1e72238459ea987e57f83e169b213d7b9))
* **vision:** add TensorFlow.js column classifier model and improve detection ([5d0ac65](https://github.com/antialias/soroban-abacus-flashcards/commit/5d0ac65bdd2bd22c8e2d586add3a0aba8dd82426))
* **vision:** broadcast vision frames to observers (Phase 5) ([b3b769c](https://github.com/antialias/soroban-abacus-flashcards/commit/b3b769c0e2e15d4a0f4e70219982dc78c72e4e2b))
* **vision:** disable auto-detection with feature flag ([a5025f0](https://github.com/antialias/soroban-abacus-flashcards/commit/a5025f01bc759de1b87c06a2a9d2d94344adc790))
* **vision:** integrate vision feed into docked abacus ([d8c7645](https://github.com/antialias/soroban-abacus-flashcards/commit/d8c764595d34dabb4b836e2eea93e0b869f09cd2))
# [2.19.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.18.0...abacus-react-v2.19.0) (2026-01-01)
### Features
- **vision:** add physical abacus column setting and fix remote flash toggle ([b206eb3](https://github.com/antialias/soroban-abacus-flashcards/commit/b206eb30712e4b98525a9fa2544c2b5a235a8b72))
- **vision:** improve remote camera calibration and UX ([8846cec](https://github.com/antialias/soroban-abacus-flashcards/commit/8846cece93941a36c187abd4ecee9cc88de0c2ec))
# [2.18.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.17.0...abacus-react-v2.18.0) (2026-01-01)
### Bug Fixes
- allow teacher-parents to enroll their children in other classrooms ([52df7f4](https://github.com/antialias/soroban-abacus-flashcards/commit/52df7f469718128fd3d8933941ffb8d4bb8db208))
- **bkt:** handle missing helpLevelUsed in legacy data causing NaN ([b300ed9](https://github.com/antialias/soroban-abacus-flashcards/commit/b300ed9f5cc3bfb0c7b28faafe81c80a59444998))
- **camera:** handle race condition in camera initialization ([2a24700](https://github.com/antialias/soroban-abacus-flashcards/commit/2a24700e6cb6efe0ae35d9ebd6c428e3a1a1a736))
- **classroom:** auto-transition tutorial→session observation + fix NaN display ([962a52d](https://github.com/antialias/soroban-abacus-flashcards/commit/962a52d7562f566e78f6272816b049bf77daa7c9))
- **classroom:** broadcast digit-by-digit answer and correct phase indicator ([fb73e85](https://github.com/antialias/soroban-abacus-flashcards/commit/fb73e85f2daacefafa572e03c16b10fab619ea57))
- **dashboard:** compute skill stats from session results in curriculum API ([11d4846](https://github.com/antialias/soroban-abacus-flashcards/commit/11d48465d710d0293ebf41f64b4fd0f1f03d8bf8))
- **db:** add missing is_paused column to session_plans ([9d8b5e1](https://github.com/antialias/soroban-abacus-flashcards/commit/9d8b5e1148911f881d08d07608debaaef91609c2))
- **db:** add missing journal entries for migrations 0041-0042 ([398603c](https://github.com/antialias/soroban-abacus-flashcards/commit/398603c75a094e28122c5ccdced5b82badc7fbfb))
- **docker:** add canvas native deps for jsdom/vitest ([5f51bc1](https://github.com/antialias/soroban-abacus-flashcards/commit/5f51bc1871aec325feb32a0b29edabb3b6c5dd1f))
- **docker:** override canvas with mock package for Alpine/musl ([8be1995](https://github.com/antialias/soroban-abacus-flashcards/commit/8be19958af624d22fa2c6cb48f5723f5efc820c3))
- **docker:** skip canvas native build (optional jsdom dep) ([d717f44](https://github.com/antialias/soroban-abacus-flashcards/commit/d717f44fccb8ed2baa30499df65784a4b89c6ffc))
- **observer:** seed results panel with full session history ([aab7469](https://github.com/antialias/soroban-abacus-flashcards/commit/aab7469d9ea87c91a0165e4c48a60ac130cdc1b2))
- only show session stats when there are actual problems ([62aefad](https://github.com/antialias/soroban-abacus-flashcards/commit/62aefad6766ba32ad27e8ed3db621a6f77520cbe))
- **practice:** allow teachers to create student profiles ([5fee129](https://github.com/antialias/soroban-abacus-flashcards/commit/5fee1297e1775b5e6133919d179e23b6e70b2518))
- **practice:** always show add student FAB button ([a658414](https://github.com/antialias/soroban-abacus-flashcards/commit/a6584143ebf1f3e5b3c9f3283e690458a06beb60))
- **practice:** real-time progress in observer modal + numeric answer comparison ([c0e63ff](https://github.com/antialias/soroban-abacus-flashcards/commit/c0e63ff68b26fd37eedd657504f7f79e5ce40a10))
- **practice:** show active sessions for teacher's own children ([ece3197](https://github.com/antialias/soroban-abacus-flashcards/commit/ece319738b6ab1882469d79ea24b604316d28b34))
- **practice:** use Next.js Link for student tiles + fix session observer z-index ([6def610](https://github.com/antialias/soroban-abacus-flashcards/commit/6def6108771b427e4885bebd23cecdad7a50efb0))
- **seed:** accurate BKT simulation for developing classifications ([d5e4c85](https://github.com/antialias/soroban-abacus-flashcards/commit/d5e4c858db8866e5177b8fa2317aba42b30171e8))
- **share:** use getShareUrl for correct production URLs ([98a69f1](https://github.com/antialias/soroban-abacus-flashcards/commit/98a69f1f80e465415edce49043e2c019a856f8e5))
- **vision:** fix manual calibration overlay not showing on remote camera ([44dcb01](https://github.com/antialias/soroban-abacus-flashcards/commit/44dcb01473bac00c09dddbbefd77dd26b3a27817))
- **vision:** fix remote camera calibration coordinate system ([e52f94e](https://github.com/antialias/soroban-abacus-flashcards/commit/e52f94e4b476658c41f23668d2941af1288e4ed8))
- **vision:** swap corners diagonally for webcam orientation ([dd8efe3](https://github.com/antialias/soroban-abacus-flashcards/commit/dd8efe379d4bbcfc4b60f7c00ad6180465b7e7b6))
### Features
- API authorization audit + teacher enrollment UI + share codes ([d6e369f](https://github.com/antialias/soroban-abacus-flashcards/commit/d6e369f9dc9b963938ca8de4562c87f9f1b6d389))
- **camera:** auto-start camera when opening camera modal ([f3bb0ae](https://github.com/antialias/soroban-abacus-flashcards/commit/f3bb0aee4fe23eeffc7b7099981f51ec54636a35))
- **camera:** fullscreen modal with edge-to-edge preview ([db17c96](https://github.com/antialias/soroban-abacus-flashcards/commit/db17c96168078f2d0d723b24395096756a2f63ec))
- **chart:** add grouped structure to chart hover tooltip ([594e22c](https://github.com/antialias/soroban-abacus-flashcards/commit/594e22c428e0a4ee4322c233f127f9250e88b5fa))
- **chart:** improve skill classification visual hierarchy with colors and patterns ([c9518a6](https://github.com/antialias/soroban-abacus-flashcards/commit/c9518a6b9952bda60ab2663d7655092637139fec))
- **classroom:** add active sessions API endpoint ([07f6bb7](https://github.com/antialias/soroban-abacus-flashcards/commit/07f6bb7f9cc2dfbe6da8d16361e89b698405e1c0))
- **classroom:** add real-time enrollment/unenrollment reactivity ([a0693e9](https://github.com/antialias/soroban-abacus-flashcards/commit/a0693e90840f651094f852a6a6f523013786b322))
- **classroom:** add session broadcast and active session indicators ([9636f7f](https://github.com/antialias/soroban-abacus-flashcards/commit/9636f7f44a71da022352c19e80f9ec147dd3af5f))
- **classroom:** add unified add-student modal with two-column layout ([dca696a](https://github.com/antialias/soroban-abacus-flashcards/commit/dca696a29fc20a2697b491c0d2efbe036569a716))
- **classroom:** add unified TeacherClassroomCard with auto-enrollment ([4d6adf3](https://github.com/antialias/soroban-abacus-flashcards/commit/4d6adf359ede5d17c2decd9275ba68635ee0bd4f))
- **classroom:** complete reactivity fixes (Steps 7-11) ([2015494](https://github.com/antialias/soroban-abacus-flashcards/commit/2015494c0eca28457031aa39490d70a2af3da4df))
- **classroom:** consolidate filter pill to single-row design ([78a63e3](https://github.com/antialias/soroban-abacus-flashcards/commit/78a63e35e39948729cbf41e6c5af4e688a506c8d))
- **classroom:** implement enrollment system (Phase 4) ([1952a41](https://github.com/antialias/soroban-abacus-flashcards/commit/1952a412edcd04b332655199737c340a4389d174))
- **classroom:** implement entry prompts system ([de39ab5](https://github.com/antialias/soroban-abacus-flashcards/commit/de39ab52cc60f5782fc291246f98013ae15142ca))
- **classroom:** implement real-time enrollment updates ([bbe0500](https://github.com/antialias/soroban-abacus-flashcards/commit/bbe0500fe9000d0d016417c1b586e9569e3eb888))
- **classroom:** implement real-time presence with WebSocket (Phase 6) ([629bfcf](https://github.com/antialias/soroban-abacus-flashcards/commit/629bfcfc03c611cd3928bb98a67bace485ee3a7b))
- **classroom:** implement real-time session observation (Step 3) ([2feb684](https://github.com/antialias/soroban-abacus-flashcards/commit/2feb6844a4fce48ba7a87d2a77769783c4e8b2f9))
- **classroom:** implement real-time skill tutorial observation ([4b73879](https://github.com/antialias/soroban-abacus-flashcards/commit/4b7387905d2b050327f9b67b834d4e9dfc0b19cb))
- **classroom:** implement teacher classroom dashboard (Phase 3) ([2202716](https://github.com/antialias/soroban-abacus-flashcards/commit/2202716f563053624dbe5c6abb969a3b0d452fd1))
- **classroom:** implement teacher-initiated pause and fix manual pause ([ccea0f8](https://github.com/antialias/soroban-abacus-flashcards/commit/ccea0f86ac213b32cac7363f28e193b1976bd553))
- **classroom:** implement two-way abacus sync for session observation (Step 5) ([2f7002e](https://github.com/antialias/soroban-abacus-flashcards/commit/2f7002e5759db705e213eb9f8474589c8e6149e7))
- **classroom:** improve enrollment reactivity and UX ([77336be](https://github.com/antialias/soroban-abacus-flashcards/commit/77336bea5b5bbf16b393da13588de6e5082e818f))
- **classroom:** integrate create student form into unified add-student modal ([da92289](https://github.com/antialias/soroban-abacus-flashcards/commit/da92289ed1ae570ff48cc28818122d4640d6c84c))
- **classroom:** integrate Enter Classroom into StudentActionMenu ([2f1b9df](https://github.com/antialias/soroban-abacus-flashcards/commit/2f1b9df9d9d605b0c120af6961670ae84718c8d7))
- **dashboard:** add skill progress chart with trend analysis and timing awareness ([1fc8949](https://github.com/antialias/soroban-abacus-flashcards/commit/1fc8949b0664591aa1b0cfcd7c7abd2a4c586281))
- enable parents to observe children's practice sessions ([7b82995](https://github.com/antialias/soroban-abacus-flashcards/commit/7b829956644d369dfdfb0789a33e0b857958e84f))
- **family:** implement parent-to-parent family code sharing (Phase 2) ([0284227](https://github.com/antialias/soroban-abacus-flashcards/commit/02842270c9278174934407a9620777589f79ee1e))
- improve session summary header and add practice type badges ([518fe15](https://github.com/antialias/soroban-abacus-flashcards/commit/518fe153c9fc2ae2f2f7fc0ed4de27ee1c5c5646))
- **observer:** add live active session item to history list ([91d6d6a](https://github.com/antialias/soroban-abacus-flashcards/commit/91d6d6a1b6938b559d8488fe296d562695cf16d1))
- **observer:** add live results panel and session progress indicator ([8527f89](https://github.com/antialias/soroban-abacus-flashcards/commit/8527f892e2b300d51d83056d779474592a2fd955))
- **observer:** implement shareable session observation links ([3ac7b46](https://github.com/antialias/soroban-abacus-flashcards/commit/3ac7b460ec0dc207a5691fbed8d539b484374fe7))
- **practice:** add auto-rotation for captured documents ([ff79a28](https://github.com/antialias/soroban-abacus-flashcards/commit/ff79a28c657fb0a19752990e23f9bb0ced4e9343))
- **practice:** add document adjustment UI and auto-capture ([473b7db](https://github.com/antialias/soroban-abacus-flashcards/commit/473b7dbd7cd15be511351a1fd303a0fc32b9d941))
- **practice:** add document scanning with multi-quad tracking ([5f4f1fd](https://github.com/antialias/soroban-abacus-flashcards/commit/5f4f1fde3372e5d65d3f399216b04ab0e4c9972e))
- **practice:** add fixed filter bar, sticky headers, and shared EmojiPicker ([0e03561](https://github.com/antialias/soroban-abacus-flashcards/commit/0e0356113ddef1ec92cd0b3fda0852d99c6067d2))
- **practice:** add intervention system and improve skill chart hierarchy ([bf5b99a](https://github.com/antialias/soroban-abacus-flashcards/commit/bf5b99afe967c0b17765a7e6f1911d03201eed95))
- **practice:** add mini start practice banner to QuickLook modal ([d1176da](https://github.com/antialias/soroban-abacus-flashcards/commit/d1176da9aa8bd926ca96699d1091e65f4a34d782))
- **practice:** add Needs Attention to unified compact layout ([8727782](https://github.com/antialias/soroban-abacus-flashcards/commit/8727782e45c7ac269c4dbcc223b2a8be57be8bb2))
- **practice:** add photo attachments for practice sessions ([9b85311](https://github.com/antialias/soroban-abacus-flashcards/commit/9b853116ecfbb19bec39923da635374963cf002c))
- **practice:** add photo editing with rotation persistence and auto-detect ([156a0df](https://github.com/antialias/soroban-abacus-flashcards/commit/156a0dfe967a48c211be527da27c92ef8b1ab20c))
- **practice:** add smooth fullscreen transition from QuickLook to dashboard ([cb8b0df](https://github.com/antialias/soroban-abacus-flashcards/commit/cb8b0dff676d48bcba4775c5981ac357d573ab27))
- **practice:** add student organization with filtering and archiving ([538718a](https://github.com/antialias/soroban-abacus-flashcards/commit/538718a814402bd9c83b3c354c5a3386ff69104d))
- **practice:** add StudentActionMenu to dashboard + fix z-index layering ([bf262e7](https://github.com/antialias/soroban-abacus-flashcards/commit/bf262e7d5305e2358d3a2464db10bc3b0866104c))
- **practice:** compact single-student categories and UI improvements ([0e7f326](https://github.com/antialias/soroban-abacus-flashcards/commit/0e7f3265fe2de3b693c47a8a556d3e7cbc726ef4))
- **practice:** implement measurement-based compact layout ([1656b93](https://github.com/antialias/soroban-abacus-flashcards/commit/1656b9324f6fb24a318820e04559c480c99762f5))
- **practice:** implement retry wrong problems system ([474c4da](https://github.com/antialias/soroban-abacus-flashcards/commit/474c4da05a8d761e63a32187f5c301b57fb6aae4))
- **practice:** parent session observation + relationship UI + error boundaries ([07484fd](https://github.com/antialias/soroban-abacus-flashcards/commit/07484fdfac3c6613a6a7709bdee25e1f8e047227))
- **practice:** polish unified student list with keyboard nav and mobile UX ([0ba1551](https://github.com/antialias/soroban-abacus-flashcards/commit/0ba1551feaa30d8f41ec5d771c00561396b043f3))
- **seed:** add category field to all mock student profiles ([f883fbf](https://github.com/antialias/soroban-abacus-flashcards/commit/f883fbfe233b7fb3d366062e7c156e3fc8e0e3a7))
- **session-summary:** redesign ProblemToReview with BKT integration and animations ([430c46a](https://github.com/antialias/soroban-abacus-flashcards/commit/430c46adb929a6c0ce7c67da4b1df7d3e2846cfd))
- **storybook:** add TeacherClassroomCard stories ([a5e5788](https://github.com/antialias/soroban-abacus-flashcards/commit/a5e5788fa96f57e0d918620e357f7920ef792b19))
- **vision:** add AbacusVisionBridge for physical soroban detection ([47088e4](https://github.com/antialias/soroban-abacus-flashcards/commit/47088e4850c25e76fe49879587227b46f699ba91))
- **vision:** add ArUco marker auto-calibration for abacus detection ([9e9a06f](https://github.com/antialias/soroban-abacus-flashcards/commit/9e9a06f2e4dc37d208ac19259be9b9830c7ad949))
- **vision:** add remote phone camera support for abacus detection ([8e4975d](https://github.com/antialias/soroban-abacus-flashcards/commit/8e4975d395c4b10bc40ae2c71473fdb1a50c114c))
### Performance Improvements
* reduce practice page dev bundle from 47MB to 115KB ([fd1df93](https://github.com/antialias/soroban-abacus-flashcards/commit/fd1df93a8fa320800275c135d5dd89390eb72c19))
- reduce practice page dev bundle from 47MB to 115KB ([fd1df93](https://github.com/antialias/soroban-abacus-flashcards/commit/fd1df93a8fa320800275c135d5dd89390eb72c19))
# [2.17.0](https://github.com/antialias/soroban-abacus-flashcards/compare/abacus-react-v2.16.0...abacus-react-v2.17.0) (2025-12-20)

View File

@@ -68,6 +68,8 @@ export interface AbacusDisplayConfig {
gestures: boolean;
soundEnabled: boolean;
soundVolume: number;
/** Number of columns on the user's physical abacus (for vision detection) */
physicalAbacusColumns: number;
}
export interface AbacusDisplayContextType {
@@ -90,6 +92,7 @@ const DEFAULT_CONFIG: AbacusDisplayConfig = {
gestures: false,
soundEnabled: true,
soundVolume: 0.8,
physicalAbacusColumns: 4,
};
const STORAGE_KEY = "soroban-abacus-display-config";
@@ -165,6 +168,12 @@ function loadConfigFromStorage(): AbacusDisplayConfig {
parsed.soundVolume <= 1
? parsed.soundVolume
: DEFAULT_CONFIG.soundVolume,
physicalAbacusColumns:
typeof parsed.physicalAbacusColumns === "number" &&
parsed.physicalAbacusColumns >= 1 &&
parsed.physicalAbacusColumns <= 21
? parsed.physicalAbacusColumns
: DEFAULT_CONFIG.physicalAbacusColumns,
};
}
} catch (error) {

22745
pnpm-lock.yaml generated

File diff suppressed because it is too large Load Diff