Files
Thomas Hallock cf45b86a28 feat(vision): add filtering and passive capture for boundary training data
Major changes:
- Add passive boundary capture during practice sessions via DockedVisionFeed
- Create BoundaryFrameFilters component with capture type, session, player,
  and time range filtering using TimelineRangeSelector
- Add sessionId/playerId metadata to boundary frame annotations
- Update boundary-samples API to store and return session/player context
- Improve boundary detector training pipeline with marker masking
- Add preprocessing pipeline preview in training data browser
- Update model sharding (2 shards instead of 1)

Files added:
- BoundaryFrameFilters.tsx - Filter UI component
- usePassiveBoundaryCapture.ts - Hook for passive training data collection
- saveBoundarySample.ts - Shared utility for saving boundary samples
- preview-augmentation/route.ts - API for preprocessing pipeline preview
- preview-masked/route.ts - API for marker masking preview
- marker_masking.py, pipeline_preview.py - Python training utilities

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-10 10:25:56 -06:00

18 lines
451 B
Plaintext

# Python dependencies for training the abacus column classifier
#
# Install with:
# pip install -r scripts/train-column-classifier/requirements.txt
#
# Or create a virtual environment:
# python -m venv .venv
# source .venv/bin/activate
# pip install -r scripts/train-column-classifier/requirements.txt
tensorflow>=2.15.0
tensorflowjs>=4.0.0
numpy>=1.24.0
Pillow>=10.0.0
scikit-learn>=1.3.0
albumentations>=1.3.0
opencv-python-headless>=4.8.0