Major changes: - Add passive boundary capture during practice sessions via DockedVisionFeed - Create BoundaryFrameFilters component with capture type, session, player, and time range filtering using TimelineRangeSelector - Add sessionId/playerId metadata to boundary frame annotations - Update boundary-samples API to store and return session/player context - Improve boundary detector training pipeline with marker masking - Add preprocessing pipeline preview in training data browser - Update model sharding (2 shards instead of 1) Files added: - BoundaryFrameFilters.tsx - Filter UI component - usePassiveBoundaryCapture.ts - Hook for passive training data collection - saveBoundarySample.ts - Shared utility for saving boundary samples - preview-augmentation/route.ts - API for preprocessing pipeline preview - preview-masked/route.ts - API for marker masking preview - marker_masking.py, pipeline_preview.py - Python training utilities Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
18 lines
451 B
Plaintext
18 lines
451 B
Plaintext
# Python dependencies for training the abacus column classifier
|
|
#
|
|
# Install with:
|
|
# pip install -r scripts/train-column-classifier/requirements.txt
|
|
#
|
|
# Or create a virtual environment:
|
|
# python -m venv .venv
|
|
# source .venv/bin/activate
|
|
# pip install -r scripts/train-column-classifier/requirements.txt
|
|
|
|
tensorflow>=2.15.0
|
|
tensorflowjs>=4.0.0
|
|
numpy>=1.24.0
|
|
Pillow>=10.0.0
|
|
scikit-learn>=1.3.0
|
|
albumentations>=1.3.0
|
|
opencv-python-headless>=4.8.0
|