feat(rithmomachia): add initial board visual to guide Overview section

- Added full initial setup array with all 48 pieces in starting positions
- Rendered board using RithmomachiaBoard component at 0.6 scale
- Added caption translation key for board visual
- Simplified language in "How to Play" steps for easier comprehension

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Thomas Hallock 2025-10-31 16:51:42 -05:00
parent 4834ece98e
commit d42bcff0d9
3 changed files with 1126 additions and 234 deletions

View File

@ -0,0 +1,102 @@
{
"guide": {
"title": "Rithmomachia Spielanleitung",
"subtitle": "Rithmomachia Das Spiel der Philosophen",
"close": "Schließen",
"maximize": "Maximieren",
"restore": "Wiederherstellen",
"bustOut": "In neuem Fenster öffnen",
"sections": {
"overview": "Schnellstart",
"pieces": "Spielfiguren",
"capture": "Schlagen",
"strategy": "Strategie",
"harmony": "Harmonie",
"victory": "Sieg"
},
"languageSelector": {
"label": "Sprache",
"en": "English",
"de": "Deutsch"
},
"overview": {
"goalTitle": "Spielziel",
"goal": "Bringen Sie 3 Ihrer Steine ins gegnerische Gebiet, um eine mathematische Progression zu bilden, überstehen Sie eine Runde des Gegners und gewinnen Sie.",
"boardTitle": "Das Spielbrett",
"boardSize": "8 Reihen × 16 Spalten (Spalten A-P, Reihen 1-8)",
"territory": "Ihre Hälfte: Schwarz kontrolliert Reihen 5-8, Weiß kontrolliert Reihen 1-4",
"enemyTerritory": "Gegnerisches Gebiet: Wo Sie Ihre Siegprogression aufbauen müssen",
"howToPlayTitle": "Spielablauf",
"step1": "Bewegen Sie Steine zunächst zur Mitte",
"step2": "Suchen Sie nach Schlagmöglichkeiten durch mathematische Beziehungen",
"step3": "Dringen Sie ins gegnerische Gebiet vor (Reihen 1-4 für Schwarz, Reihen 5-8 für Weiß)",
"step4": "Achten Sie auf Harmoniemöglichkeiten mit Ihren vorderen Steinen",
"step5": "Gewinnen Sie durch eine Progression, die eine Runde übersteht!"
},
"pieces": {
"title": "Ihre Spielfiguren (24 insgesamt)",
"description": "Jede Figur hat einen Zahlenwert und bewegt sich anders:",
"count": "Anzahl",
"circle": "Kreis",
"circleMove": "Diagonal (wie ein Läufer)",
"triangle": "Dreieck",
"triangleMove": "Geradeaus (wie ein Turm)",
"square": "Quadrat",
"squareMove": "In alle Richtungen (wie eine Dame)",
"pyramid": "Pyramide",
"pyramidMove": "Ein Feld in alle Richtungen (wie ein König)",
"pyramidTitle": "⭐ Pyramiden sind besonders",
"pyramidDescription": "Pyramiden haben 4 Seitenwerte. Beim Schlagen wählen Sie, welche Seite Sie verwenden."
},
"capture": {
"title": "Wie man schlägt",
"description": "Sie können einen gegnerischen Stein nur schlagen, wenn der Wert Ihres Steins in einer mathematischen Beziehung zu ihm steht:",
"simpleTitle": "Einfache Beziehungen (kein Helfer nötig)",
"equality": "Gleich",
"equalityExample": "Ihre 25 schlägt deren 25",
"multiple": "Vielfaches / Teiler",
"multipleExample": "Ihre 64 schlägt deren 16 (64 ÷ 16 = 4)",
"advancedTitle": "Erweiterte Beziehungen (ein Helferstein nötig)",
"sum": "Summe",
"sumExample": "Ihre 9 + Helfer 16 = Gegner 25",
"difference": "Differenz",
"differenceExample": "Ihre 30 - Helfer 10 = Gegner 20",
"product": "Produkt",
"productExample": "Ihre 5 × Helfer 5 = Gegner 25",
"helpersTitle": "💡 Was sind Helfer?",
"helpersDescription": "Helfer sind Ihre anderen Steine, die noch auf dem Brett sind sie bewegen sich nicht, sondern stellen nur ihren Wert für die Mathematik zur Verfügung. Das Spiel zeigt Ihnen gültige Schlagzüge, wenn Sie einen Stein auswählen."
},
"harmony": {
"title": "Harmonien (Progressionen)",
"description": "Bringen Sie 3 Ihrer Steine ins gegnerische Gebiet und bilden Sie eine dieser Progressionen:",
"arithmetic": "Arithmetische Progression",
"arithmeticDesc": "Mittlerer Wert ist der Durchschnitt",
"arithmeticExample": "Beispiel: 6, 9, 12 (weil 9 = (6+12)/2)",
"geometric": "Geometrische Progression",
"geometricDesc": "Mittlerer Wert ist das geometrische Mittel",
"geometricExample": "Beispiel: 4, 8, 16 (weil 8² = 4×16)",
"harmonic": "Harmonische Progression",
"harmonicDesc": "Spezielle Proportion (Formel: 2AB = M(A+B))",
"harmonicExample": "Beispiel: 6, 8, 12 (weil 2×6×12 = 8×(6+12))",
"rulesTitle": "⚠️ Wichtige Regeln",
"rule1": "Ihre 3 Steine müssen in einer geraden Linie stehen (Reihe, Spalte oder Diagonale)",
"rule2": "Alle 3 müssen im gegnerischen Gebiet sein",
"rule3": "Wenn Sie eine Harmonie bilden, hat Ihr Gegner einen Zug, um sie zu zerstören",
"rule4": "Wenn sie übersteht, gewinnen Sie!"
},
"victory": {
"title": "Wie man gewinnt",
"harmony": "Sieg #1: Harmonie (Progression)",
"harmonyDesc": "Bilden Sie eine mathematische Progression mit 3 Steinen im gegnerischen Gebiet. Wenn sie den nächsten Zug Ihres Gegners übersteht, gewinnen Sie!",
"harmonyNote": "Dies ist die primäre Siegbedingung in Rithmomachia",
"exhaustion": "Sieg #2: Erschöpfung",
"exhaustionDesc": "Wenn Ihr Gegner zu Beginn seines Zuges keine legalen Züge hat, verliert er.",
"strategyTitle": "Schnelle Strategietipps",
"tip1": "Kontrollieren Sie die Mitte leichter ins gegnerische Gebiet vorzudringen",
"tip2": "Kleine Steine sind schnell Kreise (3, 5, 7, 9) können schnell in die gegnerische Hälfte schlüpfen",
"tip3": "Große Steine sind mächtig schwerer zu schlagen aufgrund ihrer Größe",
"tip4": "Achten Sie auf Harmoniebedrohungen lassen Sie den Gegner nicht 3 Steine tief in Ihr Gebiet bringen",
"tip5": "Pyramiden sind flexibel wählen Sie den richtigen Seitenwert für jede Situation"
}
}
}

View File

@ -0,0 +1,369 @@
{
"guide": {
"title": "Rithmomachia Playing Guide",
"subtitle": "Rithmomachia The Philosopher's Game",
"close": "Close",
"maximize": "Maximize",
"restore": "Restore",
"bustOut": "Open in new window",
"sections": {
"overview": "Quick Start",
"pieces": "Pieces",
"capture": "Capture",
"strategy": "Strategy",
"harmony": "Harmony",
"victory": "Victory"
},
"languageSelector": {
"label": "Language",
"en": "English",
"de": "Deutsch",
"ja": "日本語",
"hi": "हिन्दी",
"es": "Español"
},
"overview": {
"goalTitle": "Goal of the Game",
"goal": "Arrange 3 of your pieces in enemy territory to form a mathematical progression, survive one opponent turn, and win.",
"goalDesc": "Arrange <strong>3 of your pieces in enemy territory</strong> to form a <strong>mathematical progression</strong>, survive one opponent turn, and win.",
"boardTitle": "The Board",
"boardSize": "8 rows × 16 columns (columns A-P, rows 1-8)",
"territory": "Your half: Black controls rows 5-8, White controls rows 1-4",
"enemyTerritory": "Enemy territory: Where you need to build your winning progression",
"boardItems": [
"8 rows × 16 columns (columns A-P, rows 1-8)",
"<strong>Your half:</strong> Black controls rows 5-8, White controls rows 1-4",
"<strong>Enemy territory:</strong> Where you need to build your winning progression"
],
"howToPlayTitle": "How to Play",
"step1": "Start by moving pieces toward the center",
"step2": "Look for capture opportunities using mathematical relations",
"step3": "Push into enemy territory (rows 1-4 for Black, rows 5-8 for White)",
"step4": "Watch for harmony opportunities with your forward pieces",
"step5": "Win by forming a progression that survives one turn!",
"howToPlayItems": [
"Start by moving pieces toward the center",
"Look for capture opportunities using mathematical relations",
"Push into enemy territory (rows 1-4 for Black, rows 5-8 for White)",
"Watch for harmony opportunities with your forward pieces",
"Win by forming a progression that survives one turn!"
]
},
"pieces": {
"title": "Your Pieces (24 total)",
"description": "Each piece has a number value and moves differently:",
"intro": "Each piece has a <strong>number value</strong> and moves differently:",
"count": "Count",
"circle": "Circle",
"circleMove": "Diagonal (like a bishop)",
"triangle": "Triangle",
"triangleMove": "Straight lines (like a rook)",
"square": "Square",
"squareMove": "Any direction (like a queen)",
"pyramid": "Pyramid",
"pyramidMove": "One step any way (like a king)",
"pyramidTitle": "⭐ Pyramids are special",
"pyramidDescription": "Pyramids have 4 face values. When capturing, you choose which face to use.",
"pieceTypes": {
"circle": {
"name": "Circle",
"movement": "Diagonal (like a bishop)",
"count": "Count: 8"
},
"triangle": {
"name": "Triangle",
"movement": "Straight lines (like a rook)",
"count": "Count: 8"
},
"square": {
"name": "Square",
"movement": "Any direction (like a queen)",
"count": "Count: 7"
},
"pyramid": {
"name": "Pyramid",
"movement": "One step any way (like a king)",
"count": "Count: 1"
}
},
"pyramidSpecial": {
"title": "⭐ Pyramids: The Multi-Faced Pieces",
"intro": "Unlike other pieces with a single value, Pyramids contain <strong>4 face values</strong> representing perfect squares. When capturing an enemy piece, you choose which face to use for the mathematical relation.",
"blackFaces": "Black Pyramid Faces:",
"blackValues": "36 (6²), 25 (5²), 16 (4²), 4 (2²)",
"whiteFaces": "White Pyramid Faces:",
"whiteValues": "64 (8²), 49 (7²), 36 (6²), 25 (5²)",
"howItWorks": "How face selection works:",
"rules": [
"When your Pyramid attempts a capture, you must declare which face value you're using before the relation is checked",
"The chosen face value becomes \"your piece's value\" for all mathematical relations (equality, multiple/divisor, sum, difference, product, ratio)",
"You can choose different faces for different captures—the Pyramid doesn't \"lock in\" to one value",
"This flexibility makes Pyramids excellent for creating unexpected capture opportunities and versatile helpers"
],
"example": "<strong>Example:</strong> White's Pyramid can capture Black's 16 using face 64 (multiple: 64÷16=4), face 36 (multiple: 36÷9=4, with Black's 9), or face 25 with equality if capturing Black's 25.",
"visualTitle": "Visual Example: Pyramid's Multiple Capture Options",
"visualDesc": "White's Pyramid (faces: 64, 49, 36, 25) is positioned to capture Black pieces. Notice the flexibility:",
"captureOptions": "<strong>Capture options from H5:</strong>",
"option1": "Move to I5: Choose face <strong>64</strong> → captures 16 by multiple (64÷16=4)",
"option2": "Move to H6: Choose face <strong>49</strong> → captures 49 by equality (49=49)",
"option3": "Move to G5: Choose face <strong>25</strong> → captures 25 by equality (25=25)"
}
},
"capture": {
"title": "How to Capture",
"description": "You can capture an enemy piece only if your piece's value relates mathematically to theirs:",
"intro": "You can capture an enemy piece <strong>only if your piece's value relates mathematically</strong> to theirs:",
"simpleTitle": "Simple Relations (no helper needed)",
"equality": "Equal",
"equalityExample": "Your 25 captures their 25",
"multiple": "Multiple / Divisor",
"multipleExample": "Your 64 captures their 16 (64 ÷ 16 = 4)",
"simpleEqual": {
"name": "Equal",
"desc": "Your 25 captures their 25"
},
"simpleMultiple": {
"name": "Multiple / Divisor",
"desc": "Your 64 captures their 16 (64 ÷ 16 = 4)"
},
"advancedTitle": "Advanced Relations (need one helper piece)",
"sum": "Sum",
"sumExample": "Your 9 + helper 16 = enemy 25",
"difference": "Difference",
"differenceExample": "Your 30 - helper 10 = enemy 20",
"product": "Product",
"productExample": "Your 5 × helper 5 = enemy 25",
"advancedSum": {
"name": "Sum",
"desc": "Your 9 + helper 16 = enemy 25"
},
"advancedDifference": {
"name": "Difference",
"desc": "Your 30 - helper 10 = enemy 20"
},
"advancedProduct": {
"name": "Product",
"desc": "Your 5 × helper 5 = enemy 25"
},
"helpersTitle": "💡 What are helpers?",
"helpersDescription": "Helpers are your other pieces still on the board — they don't move, just provide their value for the math. The game will show you valid captures when you select a piece.",
"helpersDesc": "Helpers are your other pieces still on the board — they don't move, just provide their value for the math. The game will show you valid captures when you select a piece.",
"example1Title": "Example: Multiple/Divisor Capture",
"example1Desc": "White's 64 (square) can capture Black's 16 (triangle) because 64 is a multiple of 16",
"example2Title": "Example: Sum Capture with Helper",
"example2Desc": "White's 9 + helper 16 = Black's 25 (9 + 16 = 25)",
"example3Title": "Example: Difference Capture with Helper",
"example3Desc": "White's 30 - helper 10 = Black's 20 (30 - 10 = 20)",
"example4Title": "Example: Product Capture with Helper",
"example4Desc": "White's 4 × helper 5 = Black's 20 (4 × 5 = 20)",
"example5Title": "Example: Ratio Capture with Helper",
"example5Desc": "White's 20 ÷ helper 4 = Black's 5 (20 ÷ 4 = 5)",
"pyramidTitle": "Special: Pyramid Captures",
"pyramidIntro": "Pyramids have 4 face values, making them incredibly versatile. You choose which face to use when attempting a capture, allowing one Pyramid to threaten multiple enemy pieces.",
"pyramidEx1Title": "Example: Pyramid Face Selection (Equality)",
"pyramidEx1Desc": "White's Pyramid (faces: 64, 49, 36, 25) can capture Black's 49 by choosing face 49 for equality (49 = 49)",
"pyramidEx1Note": "<strong>Face selection:</strong> White declares face 49 → 49 = 49 (equality) → Capture succeeds! The Pyramid could also capture pieces valued 64, 36, or 25 using the corresponding faces.",
"pyramidEx2Title": "Example: Pyramid with Helper (Sum)",
"pyramidEx2Desc": "White's Pyramid uses face 25 + helper 20 = Black's 45 (25 + 20 = 45)",
"pyramidEx2Note": "<strong>Face selection:</strong> White chooses face 25 and declares helper at D4 (value 20) → 25 + 20 = 45 (sum) → Capture succeeds! By selecting different faces, the same Pyramid could capture other values using various helpers.",
"pyramidEx3Title": "Example: Pyramid Flexibility (Multiple/Divisor)",
"pyramidEx3Desc": "Black's Pyramid (faces: 36, 25, 16, 4) can capture White's 9 using face 36 (multiple: 36 ÷ 9 = 4)",
"pyramidEx3Note": "<strong>Face selection:</strong> Black chooses face 36 → 36 ÷ 9 = 4 (multiple) → Capture succeeds! Note: Black could also use face 4 with a helper 5 for sum (4 + 5 = 9), showing multiple valid approaches."
},
"harmony": {
"title": "Harmonies (Progressions)",
"description": "Get 3 of your pieces into enemy territory forming one of these progressions:",
"intro1": "A <strong>Harmony</strong> (also called a \"Proper Victory\") is the most sophisticated way to win. Get <strong>3 of your pieces into enemy territory</strong> arranged in a straight line where their values form a mathematical pattern.",
"intro2": "Think of it like getting three numbers in a sequence—but the sequences follow special mathematical rules from ancient philosophy and music theory.",
"typesTitle": "The Three Types of Harmony",
"arithmetic": "Arithmetic Progression",
"arithmeticDesc": "Middle value is the average",
"arithmeticExample": "Example: 6, 9, 12 (because 9 = (6+12)/2)",
"geometric": "Geometric Progression",
"geometricDesc": "Middle value is geometric mean",
"geometricExample": "Example: 4, 8, 16 (because 8² = 4×16)",
"harmonic": "Harmonic Progression",
"harmonicDesc": "Special proportion (formula: 2AB = M(A+B))",
"harmonicExample": "Example: 6, 8, 12 (because 2×6×12 = 8×(6+12))",
"rulesTitle": "⚠️ Important Rules",
"rule1": "Your 3 pieces must be in a straight line (row, column, or diagonal)",
"rule2": "All 3 must be in enemy territory",
"rule3": "When you form a harmony, your opponent gets one turn to break it",
"rule4": "If it survives, you win!",
"arithmeticOld": {
"title": "1. Arithmetic Progression (Easiest to Understand)",
"desc": "The middle number is exactly halfway between the other two. In other words, the <strong>differences are equal</strong>.",
"formula": "How to check: Middle × 2 = First + Last",
"ex1": "<strong>Example 1:</strong> 6, 9, 12",
"ex1Check": "Differences: 96=3, 129=3 (equal!) • Check: 9×2 = 18 = 6+12 ✓",
"ex2": "<strong>Example 2:</strong> 5, 7, 9",
"ex2Check": "Differences: 75=2, 97=2 • Check: 7×2 = 14 = 5+9 ✓",
"ex3": "<strong>Example 3:</strong> 8, 12, 16",
"ex3Check": "Differences: 128=4, 1612=4 • Check: 12×2 = 24 = 8+16 ✓",
"tip": "<strong>Strategy tip:</strong> Your small circles (2-9) and many triangles naturally form arithmetic progressions. Look for three pieces where the gaps are equal!"
},
"geometricOld": {
"title": "2. Geometric Progression (Powers and Multiples)",
"desc": "Each number is multiplied by the same amount to get the next. The <strong>ratios are equal</strong>.",
"formula": "How to check: Middle² = First × Last",
"ex1": "<strong>Example 1:</strong> 4, 8, 16",
"ex1Check": "Ratios: 8÷4=2, 16÷8=2 (equal!) • Check: 8² = 64 = 4×16 ✓",
"ex2": "<strong>Example 2:</strong> 3, 9, 27",
"ex2Check": "Ratios: 9÷3=3, 27÷9=3 • Check: 9² = 81 = 3×27 ✓",
"ex3": "<strong>Example 3:</strong> 2, 8, 32",
"ex3Check": "Ratios: 8÷2=4, 32÷8=4 • Check: 8² = 64 = 2×32 ✓",
"tip": "<strong>Strategy tip:</strong> Square values (4, 9, 16, 25, 36, 49, 64, 81) work great here! For example, 4-16-64 (squares of 2, 4, 8)."
},
"harmonicOld": {
"title": "3. Harmonic Progression (Music-Based, Trickiest)",
"desc": "Named after musical harmonies. The pattern is: the ratio of the outer numbers equals the ratio of their differences from the middle.",
"formula": "How to check: 2 × First × Last = Middle × (First + Last)",
"ex1": "<strong>Example 1:</strong> 6, 8, 12",
"ex1Check": "Check: 2×6×12 = 144 = 8×(6+12) = 8×18 ✓",
"ex2": "<strong>Example 2:</strong> 10, 12, 15",
"ex2Check": "Check: 2×10×15 = 300 = 12×(10+15) = 12×25 ✓",
"ex3": "<strong>Example 3:</strong> 6, 10, 15",
"ex3Check": "Check: 2×6×15 = 180 = 10×(6+15) = 10×18 ✓",
"tip": "<strong>Strategy tip:</strong> Harmonic progressions are rarer. Memorize common triads: (3,4,6), (4,6,12), (6,8,12), (6,10,15), (8,12,24)."
},
"rulesOld": [
"<strong>Enemy Territory Only:</strong> All 3 pieces must be in your opponent's half (White needs rows 5-8, Black needs rows 1-4)",
"<strong>Straight Line:</strong> The 3 pieces must form a row, column, or diagonal—no scattered formations",
"<strong>Adjacent Placement:</strong> In this implementation, the 3 pieces must be next to each other (no gaps)",
"<strong>Survival Rule:</strong> When you declare a harmony, your opponent gets ONE turn to break it by capturing or moving a piece",
"<strong>Victory:</strong> If your harmony survives until your next turn starts—you win!"
],
"strategyTitle": "Strategy: How to Build Harmonies",
"strategy1Title": "Start with 2, Add the Third",
"strategy1Desc": "Get two pieces into enemy territory first. Calculate which third piece would complete a progression, then advance that piece. Your opponent may not notice the threat until it's too late!",
"strategy2Title": "Use Common Values",
"strategy2Desc": "Pieces like 6, 8, 9, 12, 16 appear in multiple progressions. If you have these in enemy territory, calculate all possible third pieces that would complete a pattern.",
"strategy3Title": "Protect the Line",
"strategy3Desc": "While building your harmony, position other pieces to defend your advancing pieces. One capture breaks the progression!",
"strategy4Title": "Block Opponent's Harmonies",
"strategy4Desc": "If your opponent has 2 pieces in your territory forming part of a progression, identify which third piece would complete it. Block that square or capture one of the two pieces immediately.",
"strategy5Title": "Calculate Before You Declare",
"strategy5Desc": "Before declaring harmony, examine if your opponent can capture any of the 3 pieces on their turn. If they can, either protect those pieces first or wait for a safer moment.",
"quickRefTitle": "💡 Quick Reference: Common Harmonies in Your Army",
"exampleTitle": "Example: Arithmetic Progression Victory",
"exampleDesc": "White has formed 6, 9, 12 in a row in Black's territory (rows 5-8). Since 9 = (6+12)/2, this is an arithmetic progression. If it survives Black's next turn, White wins!",
"exampleNote": "The highlighted pieces form the winning progression in enemy territory"
},
"victory": {
"title": "How to Win",
"harmony": "Victory #1: Harmony (Progression)",
"harmonyDesc": "Form a mathematical progression with 3 pieces in enemy territory. If it survives your opponent's next turn, you win!",
"harmonyNote": "This is the primary victory condition in Rithmomachia",
"exhaustion": "Victory #2: Exhaustion",
"exhaustionDesc": "If your opponent has no legal moves at the start of their turn, they lose.",
"strategyTitle": "Quick Strategy Tips",
"tip1": "Control the center — easier to invade enemy territory",
"tip2": "Small pieces are fast — circles (3, 5, 7, 9) can slip into enemy half quickly",
"tip3": "Large pieces are powerful — harder to capture due to their size",
"tip4": "Watch for harmony threats — don't let opponent get 3 pieces deep in your territory",
"tip5": "Pyramids are flexible — choose the right face value for each situation",
"harmonyOld": {
"title": "Victory #1: Harmony (Progression)",
"desc": "Form a mathematical progression with 3 pieces in enemy territory. If it survives your opponent's next turn, you win!",
"note": "This is the primary victory condition in Rithmomachia"
},
"exhaustionOld": {
"title": "Victory #2: Exhaustion",
"desc": "If your opponent has no legal moves at the start of their turn, they lose."
},
"exampleTitle": "Visual Example: Winning by Harmony",
"exampleDesc": "White's pieces at E6, F6, G6 form 6, 9, 12 - an arithmetic progression in Black's territory. If Black cannot break this on their next turn, White wins!",
"exampleNote": "✓ All 3 highlighted pieces are in enemy territory (rows 5-8 for White)\n✓ They form a straight line (horizontal row 6)\n✓ They satisfy arithmetic progression: 9 = (6+12)/2",
"tipsTitle": "Quick Strategy Tips",
"tips": [
"<strong>Control the center</strong> — easier to invade enemy territory",
"<strong>Small pieces are fast</strong> — circles (3, 5, 7, 9) can slip into enemy half quickly",
"<strong>Large pieces are powerful</strong> — harder to capture due to their size",
"<strong>Watch for harmony threats</strong> — don't let opponent get 3 pieces deep in your territory",
"<strong>Pyramids are flexible</strong> — choose the right face value for each situation"
]
},
"strategy": {
"title": "Strategy & Tactics",
"intro": "Rithmomachia rewards both mathematical insight and strategic planning. Success requires balancing territorial control, piece preservation, and mathematical opportunities.",
"openingPrinciples": {
"title": "Opening Principles",
"controlCenter": {
"title": "Control the Center",
"desc": "Advance pieces toward the 8-column empty center (columns EL). This provides mobility and creates capturing opportunities from multiple angles."
},
"developCircles": {
"title": "Develop Small Circles First",
"desc": "Your small circles (29) in columns D and M are mobile and versatile. Move them toward the center early to establish presence and create helper networks."
},
"protectPyramid": {
"title": "Protect Your Pyramid",
"desc": "The Pyramid is your most flexible piece (4 face values) but moves only 1 square. Keep it behind advancing lines until mid-game when mathematical threats are clear."
},
"knowNumbers": {
"title": "Know Your Numbers",
"desc": "Memorize key mathematical relationships in your army. Identify which pieces form factors, multiples, and sums—this speeds up tactical calculation."
}
},
"midGame": {
"title": "Mid-Game Tactics",
"helperNetworks": {
"title": "Build Helper Networks",
"desc": "Position pieces so multiple helpers can support captures. For example, if you have pieces valued 5 and 10, you can capture 15 (sum), 5 (difference), or 50 (product) when your mover is positioned correctly."
},
"createThreats": {
"title": "Create Capture Threats",
"desc": "Force your opponent to defend multiple pieces simultaneously. Even if you can't execute all captures, the threat constrains their options and controls the tempo."
},
"thinkDefensively": {
"title": "Think Defensively",
"desc": "After each move, check which of your pieces can be captured. High-value pieces like squares (169, 225, 289, 361) are vulnerable to many relations—position them behind defenders or in protected squares."
},
"exchangeWhenAhead": {
"title": "Exchange When Ahead",
"desc": "If you've captured more pieces or higher values, simplify the position by trading pieces. This reduces your opponent's attacking options and brings you closer to exhaustion victory."
}
},
"victoryPaths": {
"title": "Paths to Victory",
"harmony": {
"title": "Harmony Victory (Most Elegant)",
"desc": "Place 3 pieces in enemy territory forming an arithmetic, geometric, or harmonic progression. Common triads:",
"arithmetic": "<strong>Arithmetic:</strong> (6, 9, 12), (5, 7, 9), (8, 12, 16)",
"geometric": "<strong>Geometric:</strong> (4, 8, 16), (3, 9, 27), (2, 8, 32)",
"harmonic": "<strong>Harmonic:</strong> (6, 8, 12), (10, 12, 15), (6, 10, 15)"
},
"exhaustion": {
"title": "Exhaustion Victory (Attrition)",
"desc": "Capture pieces systematically until your opponent has no legal moves. Focus on: eliminating mobile pieces (Squares and Triangles), blocking diagonals and ranks, and forcing the Pyramid into a corner."
},
"points": {
"title": "Point Victory (Optional Rule)",
"desc": "If enabled, capture 30 points worth of pieces (C=1, T=2, S=3, P=5). Hunt high-value targets and preserve your own heavy pieces. Trade advantageously."
}
},
"commonMistakes": {
"title": "⚠️ Common Mistakes to Avoid",
"movingWithoutCalc": "<strong>Moving without calculation:</strong> Always check if your destination square is capturable by enemy pieces",
"ignoringGeometry": "<strong>Ignoring helper geometry:</strong> Helpers can be anywhere, but you still need a legal move path to capture",
"neglectingHarmony": "<strong>Neglecting harmony threats:</strong> If your opponent has 2 pieces in your territory forming part of a progression, block their third",
"exposingPyramid": "<strong>Leaving the Pyramid exposed:</strong> It moves only 1 square and has limited escape options—protect it early"
},
"advanced": {
"title": "Advanced Concepts",
"sacrifices": {
"title": "Positional Sacrifices",
"desc": "Sometimes sacrificing a piece opens lines for your other pieces or forces your opponent into a worse position. Calculate the resulting imbalance before sacrificing."
},
"pyramidFaces": {
"title": "Pyramid Face Selection",
"desc": "Your Pyramid has 4 face values. In captures, choose the face that maximizes future flexibility. In harmony declarations, choose the face that completes the most valuable progression type."
},
"tempo": {
"title": "Tempo and Initiative",
"desc": "Each move that forces a defensive response gains tempo. String together forcing moves (captures, threats) to dictate the pace and prevent your opponent from executing their plan."
}
}
}
}
}